Free Access
Med Sci (Paris)
Volume 30, Number 4, Avril 2014
Page(s) 422 - 428
Section Microenvironnements tumoraux : conflictuels et complémentaires
Published online 05 May 2014
  1. Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat rev Cancer 2011 ; 12 : 9–22. [PubMed] [Google Scholar]
  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed] [Google Scholar]
  3. Noman MZ, Messai Y, Carre T, et al. Microenvironmental hypoxia orchestrating the cell stroma cross talk, tumor progression and antitumor response. Crit Rev Immunol 2011 ; 31 : 357–377. [CrossRef] [PubMed] [Google Scholar]
  4. Chouaib S, Messai Y, Couve S, et al. Hypoxia promotes tumor growth in linking angiogenesis to immune escape. Front Immunol 2012 ; 3 : 21. [CrossRef] [PubMed] [Google Scholar]
  5. Kortylewski M, Yu H. Role of Stat3 in suppressing anti-tumor immunity. Curr Opin Immunol 2008 ; 20 : 228–233. [CrossRef] [PubMed] [Google Scholar]
  6. Fionda C, Malgarini G, Soriani A, et al. Inhibition of glycogen synthase kinase-3 increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of STAT3. J Immunol 2013 ; 190 : 6662–6672. [CrossRef] [PubMed] [Google Scholar]
  7. Gray MJ, Zhang J, Ellis LM, et al. HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene 2005 ; 24 : 3110–3120. [CrossRef] [PubMed] [Google Scholar]
  8. Carbajo-Pescador S, Ordonez R, Benet M, et al. Inhibition of VEGF expression through blockade of Hif1alpha and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. Br J Cancer 2013 ; 109 : 83–91. [CrossRef] [PubMed] [Google Scholar]
  9. Baginska J, Viry E, Berchem G, et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc Natl Acad Sci USA 2013 ; 110 : 17450–17455. [Google Scholar]
  10. Noman MZ, Buart S, Van Pelt J, et al. The cooperative induction of hypoxia-inducible factor-1 alpha and STAT3 during hypoxia induced an impairment of tumor susceptibility to CTL-mediated cell lysis. J Immunol 2009 ; 182 : 3510–3521. [CrossRef] [PubMed] [Google Scholar]
  11. Noh KH, Kim BW, Song KH, et al. Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J Clin Invest 2012 ; 122 : 4077–4093. [CrossRef] [PubMed] [Google Scholar]
  12. Olson P, Lu J, Zhang H, et al. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 2009 ; 23 : 2152–2165. [CrossRef] [PubMed] [Google Scholar]
  13. Imamura T, Kikuchi H, Herraiz MT, et al. HIF-1alpha and HIF-2alpha have divergent roles in colon cancer. Int J Cancer 2009 ; 124 : 763–771. [CrossRef] [PubMed] [Google Scholar]
  14. Balsamo M, Manzini C, Pietra G, et al. Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur J Immunol 2013 ; 43 : 2756–2764. [CrossRef] [PubMed] [Google Scholar]
  15. Cao P, Deng Z, Wan M, et al. MicroRNA-101 negatively regulates Ezh2, its expression is modulated by androgen receptor, HIF-1alpha/HIF-1beta. Mol Cancer 2010 ; 9 : 108. [CrossRef] [PubMed] [Google Scholar]
  16. Chan YC, Banerjee J, Choi SY, Sen CK. miR-210: the master hypoxamir. Microcirculation 2012 ; 19 : 215–223. [CrossRef] [PubMed] [Google Scholar]
  17. Akalay I, Janji B, Hasmim M, et al. Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Res 2013 ; 73 : 2418–2427. [CrossRef] [PubMed] [Google Scholar]
  18. Siemens DR, Hu N, Sheikhi AK, et al. Hypoxia increases tumor cell shedding of MHC class I chain-related molecule: role of nitric oxide. Cancer Res 2008 ; 68 : 4746–4753. [CrossRef] [PubMed] [Google Scholar]
  19. Yamada N, Yamanegi K, Ohyama H, et al. Hypoxia downregulates the expression of cell surface MICA without increasing soluble MICA in osteosarcoma cells in a HIF-1alpha-dependent manner. Int J Oncol 2012 ; 41 : 2005–2012. [PubMed] [Google Scholar]
  20. Perier A, Fregni G, Wittnebel S, et al. Mutations of the von Hippel-Lindau gene confer increased susceptibility to natural killer cells of clear-cell renal cell carcinoma. Oncogene 2011 ; 30 : 2622–2632. [CrossRef] [PubMed] [Google Scholar]
  21. Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002 ; 23 : 549–555. [CrossRef] [PubMed] [Google Scholar]
  22. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 2008 ; 8 : 618–631. [CrossRef] [PubMed] [Google Scholar]
  23. Doedens AL, Stockmann C, Rubinstein MP, et al. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 2010 ; 70 : 7465–7475. [CrossRef] [PubMed] [Google Scholar]
  24. Leek RD, Talks KL, Pezzella F, et al. Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in Human breast cancer. Cancer Res 2002 ; 62 : 1326–1329. [PubMed] [Google Scholar]
  25. Peranzoni E, Zilio S, Marigo I, et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 2010 ; 22 : 238–244. [CrossRef] [PubMed] [Google Scholar]
  26. Corzo CA, Condamine T, Lu L, et al. HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 2010 ; 207 : 2439–2453. [CrossRef] [PubMed] [Google Scholar]
  27. Sceneay J, Chow MT, Chen A, et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res 2012 ; 72 : 3906–3911. [CrossRef] [PubMed] [Google Scholar]
  28. Fan J, Cai H, Li Q, et al. The effects of ROS-mediating oxygen tension on human CD34(+)CD38(-) cells induced into mature dendritic cells. J Biotechnol 2012 ; 158 : 104–111. [CrossRef] [PubMed] [Google Scholar]
  29. Jantsch J, Chakravortty D, Turza N, et al. Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. J Immunol 2008 ; 180 : 4697–4705. [CrossRef] [PubMed] [Google Scholar]
  30. Bosco MC, Pierobon D, Blengio F, et al. Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood 2011 ; 117 : 2625–2639. [CrossRef] [PubMed] [Google Scholar]
  31. Blengio F, Raggi F, Pierobon D, et al. The hypoxic environment reprograms the cytokine/chemokine expression profile of human mature dendritic cells. Immunobiology 2013 ; 218 : 76–89. [CrossRef] [PubMed] [Google Scholar]
  32. Olin MR, Andersen BM, Litterman AJ, et al. Oxygen is a master regulator of the immunogenicity of primary human glioma cells. Cancer Res 2011 ; 71 : 6583–6589. [CrossRef] [PubMed] [Google Scholar]
  33. Sun J, Zhang Y, Yang M, et al. Hypoxia induces T-cell apoptosis by inhibiting chemokine C receptor 7 expression: the role of adenosine receptor A(2). Cell Mol Immunol 2010 ; 7 : 77–82. [CrossRef] [PubMed] [Google Scholar]
  34. Makino Y, Nakamura H, Ikeda E, et al. Hypoxia-inducible factor regulates survival of antigen receptor-driven T cells. J Immunol 2003 ; 171 : 6534–6540. [CrossRef] [PubMed] [Google Scholar]
  35. Larbi A, Zelba H, Goldeck D, Pawelec G. Induction of HIF-1alpha and the glycolytic pathway alters apoptotic and differentiation profiles of activated human T cells. J Leukoc Biol 2010 ; 87 : 265–273. [CrossRef] [PubMed] [Google Scholar]
  36. Caldwell CC, Kojima H, Lukashev D, et al. Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol 2001 ; 167 : 6140–6149. [CrossRef] [PubMed] [Google Scholar]
  37. Lukashev D, Klebanov B, Kojima H, et al. Cutting edge: hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. J Immunol 2006 ; 177 : 4962–4965. [CrossRef] [PubMed] [Google Scholar]
  38. Clambey ET, McNamee EN, Westrich JA, et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci USA 2012 ; 109 : E2784–E2793. [CrossRef] [Google Scholar]
  39. Dang EV, Barbi J, Yang HY, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 2011 ; 146 : 772–784. [CrossRef] [PubMed] [Google Scholar]
  40. Winn HR, Rubio R, Berne RM. Brain adenosine concentration during hypoxia in rats. Am J Physiol 1981 ; 241 : H235–H242. [PubMed] [Google Scholar]
  41. Ohta A, Gorelik E, Prasad SJ, et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA 2006 ; 103 : 13132–13137. [CrossRef] [Google Scholar]
  42. Facciabene A, Peng X, Hagemann IS, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 2011 ; 475 : 226–230. [CrossRef] [PubMed] [Google Scholar]
  43. Sarkar S, Germeraad WT, Rouschop KM, et al. Hypoxia induced impairment of NK cell cytotoxicity against multiple myeloma can be overcome by IL-2 activation of the NK cells. PLoS One 2013 ; 8 : e64835. [CrossRef] [PubMed] [Google Scholar]
  44. Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012 ; 366 : 2455–2465. [Google Scholar]
  45. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012 ; 366 : 2443–2454. [Google Scholar]
  46. Provot S. Contrôle de la croissance et de la dissémination tumorales par le microenvironnement : certitudes et hypothèses émergentes. Med Sci (Paris) 2014 ; 30 : 366–371. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Buache E, Rio MC. Le stroma tumoral, un terreau fertile pour la cellule cancéreuse. Med Sci (Paris) 2014 ; 30 : 385–390. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Albrengues J, Meneguzzi G, Gaggioli C. L’invasion des cellules tumorales : quand les fibroblastes s’en mêlent. Med Sci (Paris) 2014 ; 30 : 391–397. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Hubert S, Abastado JP. Les étapes précoces du processus métastatique. Med Sci (Paris) 2014 ; 30 : 378–384. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Bruchard M, Ghiringhelli F. Micro-environnement tumoral : cellules régulatrices et cytokines immunosuppressives. Med Sci (Paris) 2014 ; 30 : 429–435. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Galon J, Bindea G, Mlecnik B, et al. Microenvironnement immunitaire et cancer : intérêt de l'immunoscore pour prédire l'évolution clinique. Med Sci (Paris) 2014 ; 30 : 439–444. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Tartour E, Sandoval F, Bonnefoy JY, Fridman WH. Cancer immunotherapy: recent breakthroughs and perspectives. Med Sci (Paris) 2011 ; 27 : 833–841. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.