Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 4, Avril 2014
Page(s) 422 - 428
Section Microenvironnements tumoraux : conflictuels et complémentaires
DOI https://doi.org/10.1051/medsci/20143004017
Publié en ligne 5 mai 2014
  1. Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat rev Cancer 2011 ; 12 : 9–22. [PubMed]
  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed]
  3. Noman MZ, Messai Y, Carre T, et al. Microenvironmental hypoxia orchestrating the cell stroma cross talk, tumor progression and antitumor response. Crit Rev Immunol 2011 ; 31 : 357–377. [CrossRef] [PubMed]
  4. Chouaib S, Messai Y, Couve S, et al. Hypoxia promotes tumor growth in linking angiogenesis to immune escape. Front Immunol 2012 ; 3 : 21. [CrossRef] [PubMed]
  5. Kortylewski M, Yu H. Role of Stat3 in suppressing anti-tumor immunity. Curr Opin Immunol 2008 ; 20 : 228–233. [CrossRef] [PubMed]
  6. Fionda C, Malgarini G, Soriani A, et al. Inhibition of glycogen synthase kinase-3 increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of STAT3. J Immunol 2013 ; 190 : 6662–6672. [CrossRef] [PubMed]
  7. Gray MJ, Zhang J, Ellis LM, et al. HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene 2005 ; 24 : 3110–3120. [CrossRef] [PubMed]
  8. Carbajo-Pescador S, Ordonez R, Benet M, et al. Inhibition of VEGF expression through blockade of Hif1alpha and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. Br J Cancer 2013 ; 109 : 83–91. [CrossRef] [PubMed]
  9. Baginska J, Viry E, Berchem G, et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc Natl Acad Sci USA 2013 ; 110 : 17450–17455. [CrossRef] [PubMed]
  10. Noman MZ, Buart S, Van Pelt J, et al. The cooperative induction of hypoxia-inducible factor-1 alpha and STAT3 during hypoxia induced an impairment of tumor susceptibility to CTL-mediated cell lysis. J Immunol 2009 ; 182 : 3510–3521. [CrossRef] [PubMed]
  11. Noh KH, Kim BW, Song KH, et al. Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J Clin Invest 2012 ; 122 : 4077–4093. [CrossRef] [PubMed]
  12. Olson P, Lu J, Zhang H, et al. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 2009 ; 23 : 2152–2165. [CrossRef] [PubMed]
  13. Imamura T, Kikuchi H, Herraiz MT, et al. HIF-1alpha and HIF-2alpha have divergent roles in colon cancer. Int J Cancer 2009 ; 124 : 763–771. [CrossRef] [PubMed]
  14. Balsamo M, Manzini C, Pietra G, et al. Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur J Immunol 2013 ; 43 : 2756–2764. [CrossRef] [PubMed]
  15. Cao P, Deng Z, Wan M, et al. MicroRNA-101 negatively regulates Ezh2, its expression is modulated by androgen receptor, HIF-1alpha/HIF-1beta. Mol Cancer 2010 ; 9 : 108. [CrossRef] [PubMed]
  16. Chan YC, Banerjee J, Choi SY, Sen CK. miR-210: the master hypoxamir. Microcirculation 2012 ; 19 : 215–223. [CrossRef] [PubMed]
  17. Akalay I, Janji B, Hasmim M, et al. Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Res 2013 ; 73 : 2418–2427. [CrossRef] [PubMed]
  18. Siemens DR, Hu N, Sheikhi AK, et al. Hypoxia increases tumor cell shedding of MHC class I chain-related molecule: role of nitric oxide. Cancer Res 2008 ; 68 : 4746–4753. [CrossRef] [PubMed]
  19. Yamada N, Yamanegi K, Ohyama H, et al. Hypoxia downregulates the expression of cell surface MICA without increasing soluble MICA in osteosarcoma cells in a HIF-1alpha-dependent manner. Int J Oncol 2012 ; 41 : 2005–2012. [PubMed]
  20. Perier A, Fregni G, Wittnebel S, et al. Mutations of the von Hippel-Lindau gene confer increased susceptibility to natural killer cells of clear-cell renal cell carcinoma. Oncogene 2011 ; 30 : 2622–2632. [CrossRef] [PubMed]
  21. Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002 ; 23 : 549–555. [CrossRef]
  22. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 2008 ; 8 : 618–631. [CrossRef] [PubMed]
  23. Doedens AL, Stockmann C, Rubinstein MP, et al. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 2010 ; 70 : 7465–7475. [CrossRef] [PubMed]
  24. Leek RD, Talks KL, Pezzella F, et al. Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in Human breast cancer. Cancer Res 2002 ; 62 : 1326–1329. [PubMed]
  25. Peranzoni E, Zilio S, Marigo I, et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 2010 ; 22 : 238–244. [CrossRef] [PubMed]
  26. Corzo CA, Condamine T, Lu L, et al. HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 2010 ; 207 : 2439–2453. [CrossRef] [PubMed]
  27. Sceneay J, Chow MT, Chen A, et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res 2012 ; 72 : 3906–3911. [CrossRef] [PubMed]
  28. Fan J, Cai H, Li Q, et al. The effects of ROS-mediating oxygen tension on human CD34(+)CD38(-) cells induced into mature dendritic cells. J Biotechnol 2012 ; 158 : 104–111. [CrossRef] [PubMed]
  29. Jantsch J, Chakravortty D, Turza N, et al. Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. J Immunol 2008 ; 180 : 4697–4705. [CrossRef] [PubMed]
  30. Bosco MC, Pierobon D, Blengio F, et al. Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood 2011 ; 117 : 2625–2639. [CrossRef] [PubMed]
  31. Blengio F, Raggi F, Pierobon D, et al. The hypoxic environment reprograms the cytokine/chemokine expression profile of human mature dendritic cells. Immunobiology 2013 ; 218 : 76–89. [CrossRef] [PubMed]
  32. Olin MR, Andersen BM, Litterman AJ, et al. Oxygen is a master regulator of the immunogenicity of primary human glioma cells. Cancer Res 2011 ; 71 : 6583–6589. [CrossRef] [PubMed]
  33. Sun J, Zhang Y, Yang M, et al. Hypoxia induces T-cell apoptosis by inhibiting chemokine C receptor 7 expression: the role of adenosine receptor A(2). Cell Mol Immunol 2010 ; 7 : 77–82. [CrossRef] [PubMed]
  34. Makino Y, Nakamura H, Ikeda E, et al. Hypoxia-inducible factor regulates survival of antigen receptor-driven T cells. J Immunol 2003 ; 171 : 6534–6540. [CrossRef] [PubMed]
  35. Larbi A, Zelba H, Goldeck D, Pawelec G. Induction of HIF-1alpha and the glycolytic pathway alters apoptotic and differentiation profiles of activated human T cells. J Leukoc Biol 2010 ; 87 : 265–273. [CrossRef] [PubMed]
  36. Caldwell CC, Kojima H, Lukashev D, et al. Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol 2001 ; 167 : 6140–6149. [CrossRef] [PubMed]
  37. Lukashev D, Klebanov B, Kojima H, et al. Cutting edge: hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. J Immunol 2006 ; 177 : 4962–4965. [CrossRef] [PubMed]
  38. Clambey ET, McNamee EN, Westrich JA, et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci USA 2012 ; 109 : E2784–E2793. [CrossRef]
  39. Dang EV, Barbi J, Yang HY, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 2011 ; 146 : 772–784. [CrossRef] [PubMed]
  40. Winn HR, Rubio R, Berne RM. Brain adenosine concentration during hypoxia in rats. Am J Physiol 1981 ; 241 : H235–H242. [PubMed]
  41. Ohta A, Gorelik E, Prasad SJ, et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA 2006 ; 103 : 13132–13137. [CrossRef]
  42. Facciabene A, Peng X, Hagemann IS, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 2011 ; 475 : 226–230. [CrossRef] [PubMed]
  43. Sarkar S, Germeraad WT, Rouschop KM, et al. Hypoxia induced impairment of NK cell cytotoxicity against multiple myeloma can be overcome by IL-2 activation of the NK cells. PLoS One 2013 ; 8 : e64835. [CrossRef] [PubMed]
  44. Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012 ; 366 : 2455–2465. [CrossRef] [PubMed]
  45. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012 ; 366 : 2443–2454. [CrossRef] [PubMed]
  46. Provot S. Contrôle de la croissance et de la dissémination tumorales par le microenvironnement : certitudes et hypothèses émergentes. Med Sci (Paris) 2014 ; 30 : 366–371. [CrossRef] [EDP Sciences] [PubMed]
  47. Buache E, Rio MC. Le stroma tumoral, un terreau fertile pour la cellule cancéreuse. Med Sci (Paris) 2014 ; 30 : 385–390. [CrossRef] [EDP Sciences] [PubMed]
  48. Albrengues J, Meneguzzi G, Gaggioli C. L’invasion des cellules tumorales : quand les fibroblastes s’en mêlent. Med Sci (Paris) 2014 ; 30 : 391–397. [CrossRef] [EDP Sciences] [PubMed]
  49. Hubert S, Abastado JP. Les étapes précoces du processus métastatique. Med Sci (Paris) 2014 ; 30 : 378–384. [CrossRef] [EDP Sciences] [PubMed]
  50. Bruchard M, Ghiringhelli F. Micro-environnement tumoral : cellules régulatrices et cytokines immunosuppressives. Med Sci (Paris) 2014 ; 30 : 429–435. [CrossRef] [EDP Sciences] [PubMed]
  51. Galon J, Bindea G, Mlecnik B, et al. Microenvironnement immunitaire et cancer : intérêt de l'immunoscore pour prédire l'évolution clinique. Med Sci (Paris) 2014 ; 30 : 439–444. [CrossRef] [EDP Sciences] [PubMed]
  52. Tartour E, Sandoval F, Bonnefoy JY, Fridman WH. Cancer immunotherapy: recent breakthroughs and perspectives. Med Sci (Paris) 2011 ; 27 : 833–841. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.