Free Access
Issue
Med Sci (Paris)
Volume 30, Number 4, Avril 2014
Page(s) 415 - 421
Section Microenvironnements tumoraux : conflictuels et complémentaires
DOI https://doi.org/10.1051/medsci/20143004016
Published online 05 May 2014
  1. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 2007 ; 6 : 273–286. [CrossRef] [PubMed] [Google Scholar]
  2. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004 ; 350 : 2335–2342. [CrossRef] [PubMed] [Google Scholar]
  3. Al-Husein B, Abdalla M, Trepte M, et al. Antiangiogenic therapy for cancer: an update. Pharmacotherapy 2012 ; 32 : 1095–1111. [CrossRef] [PubMed] [Google Scholar]
  4. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011 ; 473 : 298–307. [CrossRef] [PubMed] [Google Scholar]
  5. Farnsworth RH, Lackmann M, Achen MG, Stacker SA. Vascular remodeling in cancer. Oncogene 2013 ; doi : 10.1038/onc.2013.304. [Google Scholar]
  6. Chandel NS, Maltepe E, Goldwasser E, et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 1998 ; 95 : 11715–11720. [CrossRef] [Google Scholar]
  7. Bensimon J. Le switch angiogénique ou comment réveiller les cellules tumorales dormantes. Med Sci (Paris) 2012 ; 28 : 1069–1071. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Tertil M, Jozkowicz A, Dulak J. Oxidative stress in tumor angiogenesis–therapeutic targets. Curr Pharm Des 2010 ; 16 : 3877–3894. [CrossRef] [PubMed] [Google Scholar]
  9. Gregory AD, Houghton AM. Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 2011 ; 71 : 2411–2416. [CrossRef] [PubMed] [Google Scholar]
  10. Creagan ET, Moertel CG, O’Fallon JR, et al. Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. N Engl J Med 1979 ; 301 : 687–690. [CrossRef] [PubMed] [Google Scholar]
  11. Laleu B, Gaggini F, Orchard M, et al. First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J Med Chem 2010 ; 53 : 7715–7730. [CrossRef] [PubMed] [Google Scholar]
  12. Bonner MY, Arbiser JL. Targeting NADPH oxidases for the treatment of cancer and inflammation. Cell Mol Life Sci 2012 ; 69 : 2435–2442. [CrossRef] [PubMed] [Google Scholar]
  13. Gray SP, Di Marco E, Okabe J, et al. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 2013 ; 127 : 1888–1902. [CrossRef] [PubMed] [Google Scholar]
  14. Ushio-Fukai M. Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res 2006 ; 71 : 226–235. [CrossRef] [PubMed] [Google Scholar]
  15. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 2011 ; 21 : 103–115. [CrossRef] [PubMed] [Google Scholar]
  16. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007 ; 87 : 245–313. [CrossRef] [PubMed] [Google Scholar]
  17. Guichard C, Pedruzzi E, Fay M, et al. Les Nox/Duox : une nouvelle famille de NADPH oxydases. Med Sci (Paris) 2006 ; 22 : 953–959. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Lambeth JD, Kawahara T, Diebold B. Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med 2007 ; 43 : 319–331. [CrossRef] [PubMed] [Google Scholar]
  19. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004 ; 4 : 181–189. [CrossRef] [PubMed] [Google Scholar]
  20. Gianni D, DerMardirossian C, Bokoch GM. Direct interaction between Tks proteins and the N-terminal proline-rich region (PRR) of NoxA1 mediates Nox1-dependent ROS generation. Eur J Cell Biol 2011 ; 90 : 164–171. [CrossRef] [PubMed] [Google Scholar]
  21. Chatterjee S, Feinstein SI, Dodia C, et al. Peroxiredoxin 6 phosphorylation and subsequent phospholipase A2 activity are required for agonist-mediated activation of NADPH oxidase in mouse pulmonary microvascular endothelium and alveolar macrophages. J Biol Chem 2011 ; 286 : 11696–11706. [CrossRef] [PubMed] [Google Scholar]
  22. Thakur S, Du J, Hourani S, et al. Inactivation of adenosine A2A receptor attenuates basal and angiotensin II-induced ROS production by Nox2 in endothelial cells. J Biol Chem 2010 ; 285 : 40104–40113. [CrossRef] [PubMed] [Google Scholar]
  23. Garrido-Urbani S, Jemelin S, Deffert C, et al. Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARalpha mediated mechanism. PLoS One 2011 ; 6 : e14665. [CrossRef] [PubMed] [Google Scholar]
  24. Frey RS, Ushio-Fukai M, Malik AB. NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid Redox Signal 2009 ; 11 : 791–810. [CrossRef] [PubMed] [Google Scholar]
  25. Shinohara M, Shang WH, Kubodera M, et al. Nox1 redox signaling mediates oncogenic Ras-induced disruption of stress fibers and focal adhesions by down-regulating Rho. J Biol Chem 2007 ; 282 : 17640–17648. [CrossRef] [PubMed] [Google Scholar]
  26. Shinohara M, Adachi Y, Mitsushita J, et al. Reactive oxygen generated by NADPH oxidase 1 (Nox1) contributes to cell invasion by regulating matrix metalloprotease-9 production and cell migration. J Biol Chem 2010 ; 285 : 4481–4488. [CrossRef] [PubMed] [Google Scholar]
  27. Sadok A, Bourgarel-Rey V, Gattacceca F, et al. Nox1-dependent superoxide production controls colon adenocarcinoma cell migration. Biochim Biophys Acta 2008 ; 1783 : 23–33. [CrossRef] [PubMed] [Google Scholar]
  28. Kobayashi S, Nojima Y, Shibuya M, Maru Y. Nox1 regulates apoptosis and potentially stimulates branching morphogenesis in sinusoidal endothelial cells. Exp Cell Res 2004 ; 300 : 455–462. [CrossRef] [PubMed] [Google Scholar]
  29. Chen F, Qian LH, Deng B, et al. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress. CNS Neurosci Ther 2013 ; 19 : 675–681. [CrossRef] [PubMed] [Google Scholar]
  30. Ushio-Fukai M, Tang Y, Fukai T, et al. Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res 2002 ; 91 : 1160–1167. [CrossRef] [PubMed] [Google Scholar]
  31. Ikeda S, Yamaoka-Tojo M, Hilenski L, et al. IQGAP1 regulates reactive oxygen species-dependent endothelial cell migration through interacting with Nox2. Arterioscler Thromb Vasc Biol 2005 ; 25 : 2295–2300. [CrossRef] [PubMed] [Google Scholar]
  32. Ushio-Fukai M. VEGF signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal 2007 ; 9 : 731–739. [CrossRef] [PubMed] [Google Scholar]
  33. Schroder K, Schutz S, Schloffel I, et al. Hepatocyte growth factor induces a proangiogenic phenotype and mobilizes endothelial progenitor cells by activating Nox2. Antioxid Redox Signal 2011 ; 15 : 915–923. [CrossRef] [PubMed] [Google Scholar]
  34. Ago T, Kitazono T, Ooboshi H, et al. Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation 2004 ; 109 : 227–233. [CrossRef] [PubMed] [Google Scholar]
  35. Bhandarkar SS, Jaconi M, Fried LE, et al. Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of endothelial tumors in mice. J Clin Invest 2009 ; 119 : 2359–2365. [PubMed] [Google Scholar]
  36. Petry A, Djordjevic T, Weitnauer M, et al. NOX2 and NOX4 mediate proliferative response in endothelial cells. Antioxid Redox Signal 2006 ; 8 : 1473–1484. [CrossRef] [PubMed] [Google Scholar]
  37. Mochizuki T, Furuta S, Mitsushita J, et al. Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene 2006 ; 25 : 3699–3707. [CrossRef] [PubMed] [Google Scholar]
  38. Schroder K, Zhang M, Benkhoff S, et al. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res 2012 ; 110 : 1217–1225. [CrossRef] [PubMed] [Google Scholar]
  39. Fried L, Arbiser JL. The reactive oxygen-driven tumor: relevance to melanoma. Pigment Cell Melanoma Res 2008 ; 21 : 117–122. [CrossRef] [PubMed] [Google Scholar]
  40. Maraldi T, Prata C, Vieceli Dalla Sega F, et al. NAD(P)H oxidase isoform Nox2 plays a prosurvival role in human leukaemia cells. Free Radic Res 2009 ; 43 : 1111–1121. [CrossRef] [PubMed] [Google Scholar]
  41. Peshavariya H, Dusting GJ, Jiang F, et al. NADPH oxidase isoform selective regulation of endothelial cell proliferation and survival. Naunyn Schmiedebergs Arch Pharmacol 2009 ; 380 : 193–204. [CrossRef] [PubMed] [Google Scholar]
  42. Azzi S, Gavard J. Vaisseaux sanguins et tumeurs ou l’art du dialogue. Med Sci (Paris) 2014 ; 30 : 408–414. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Hasmim M, Messai Y, Zaeem M, Chouaib S. L’hypoxie tumorale : un déterminant clé de la réactivité stromale et de la réponse antitumorale. Med Sci (Paris) 2014 ; 30 : 422–428. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.