Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 4, Avril 2014
Page(s) 429 - 435
Section Microenvironnements tumoraux : conflictuels et complémentaires
DOI https://doi.org/10.1051/medsci/20143004018
Publié en ligne 5 mai 2014
  1. Hanahan D, Weinberg RA., Hallmarks of cancer: the next generation. Cell 2011 ; 144 : 64674. [CrossRef] [PubMed] [Google Scholar]
  2. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 2005 ; 6 : 611–622. [CrossRef] [PubMed] [Google Scholar]
  3. Warburg O. On the origin of cancer cells. Science 1956 ; 123 : 309–314. [CrossRef] [PubMed] [Google Scholar]
  4. Klymkowsky MW, Savagner P. Epithelial-mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am J Pathol 2009 ; 174 : 1588–1593. [CrossRef] [PubMed] [Google Scholar]
  5. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996 ; 86 : 353–364. [CrossRef] [PubMed] [Google Scholar]
  6. Ferrara N. Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev 2010 ; 21 : 21–26. [CrossRef] [PubMed] [Google Scholar]
  7. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010 ; 140 : 883–899. [CrossRef] [PubMed] [Google Scholar]
  8. Garcia-Lora A, Algarra I, Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 2003 ; 195 : 346–355. [CrossRef] [PubMed] [Google Scholar]
  9. Ghiringhelli F, Larmonier N, Schmitt E, et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 2004 ; 34 : 336–344. [CrossRef] [PubMed] [Google Scholar]
  10. Weiss JM, Bilate AM, Gobert M, et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med 2012 ; 209 : 1723–1742. [CrossRef] [PubMed] [Google Scholar]
  11. Ghiringhelli F, Ménard C, Terme M, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 2005 ; 202 : 1075–1085. [CrossRef] [PubMed] [Google Scholar]
  12. Ladoire S, Martin F, Ghiringhelli F. Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother 2011 ; 60 : 909–918. [CrossRef] [PubMed] [Google Scholar]
  13. Badoual C, Hans S, Rodriguez J, et al. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res 2006 ; 12 : 465–472. [CrossRef] [PubMed] [Google Scholar]
  14. Carreras J, Lopez-Guillermo A, Fox BC, et al. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 2006 ; 108 : 2957–2964. [CrossRef] [PubMed] [Google Scholar]
  15. Crome SQ, Clive B, Wang AW, et al. Inflammatory effects of ex vivo human Th17 cells are suppressed by regulatory T cells. J Immunol 2010 ; 185 : 3199–3208. [CrossRef] [PubMed] [Google Scholar]
  16. Martin F, Apetoh L, Ghiringhelli F. Controversies on the role of Th17 in cancer: a TGF-beta-dependent immunosuppressive activity? Trends Mol Med 2012 ; 18 : 742–749. [CrossRef] [PubMed] [Google Scholar]
  17. Nunez S, Saez JJ, Fernandez D, et al. Th17 cells contribute to anti-tumor immunity and promote the recruitment of th1 cells to the tumor. Immunology 2012 ; 139 : 61–71. [CrossRef] [Google Scholar]
  18. Chalmin F, Mignot G, Bruchard M, et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 2012 ; 36 : 362–373. [CrossRef] [PubMed] [Google Scholar]
  19. Mantovani A. Molecular pathways linking inflammation and cancer. Curr Mol Med 2010 ; 10 : 369–373. [CrossRef] [PubMed] [Google Scholar]
  20. Hestdal K, Ruscetti FW, Ihle JN, et al. Characterization and regulation of RB6–8C5 antigen expression on murine bone marrow cells. J Immunol 1991 ; 147 : 22–28. [PubMed] [Google Scholar]
  21. Movahedi K, Guilliams M, Van den Bossche J, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 2008 ; 111 : 4233–4244. [CrossRef] [PubMed] [Google Scholar]
  22. O’Garra A, Vieira P. Regulatory T cells and mechanisms of immune system control. Nat Med 2004 ; 10 : 801–805. [CrossRef] [PubMed] [Google Scholar]
  23. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001 ; 19 : 683–765. [CrossRef] [PubMed] [Google Scholar]
  24. Connolly EC, Akhurst RJ. The complexities of TGF-beta action during mammary and squamous cell carcinogenesis. Curr Pharm Biotechnol 2011 ; 12 : 2138–2149. [CrossRef] [PubMed] [Google Scholar]
  25. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P. The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 2010 ; 10 : 554–567. [CrossRef] [PubMed] [Google Scholar]
  26. Regateiro FS, Howic D, Nolan KF, et al. Generation of anti-inflammatory adenosine by leukocytes is regulated by TGF-beta. Eur J Immunol 2011 ; 41 : 2955–2965. [CrossRef] [PubMed] [Google Scholar]
  27. Kalinski P, Hilkens CM, Snijders A, et al. IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J Immunol 1997 ; 159 : 28–35. [PubMed] [Google Scholar]
  28. Mailliard RB, Alber SM, Shen H, et al. IL-18-induced CD83+CCR7+ NK helper cells. J Exp Med 2005 ; 202 : 941–953. [CrossRef] [PubMed] [Google Scholar]
  29. Kalinski P. Regulation of immune responses by prostaglandin E2. J Immunol 2012 ; 188 : 21–28. [CrossRef] [PubMed] [Google Scholar]
  30. Dankbar B, Padro T, Leo R, et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 2000 ; 95 : 2630–2636. [PubMed] [Google Scholar]
  31. Pu YS, Hour TC, Chuang SE, et al. Interleukin-6 is responsible for drug resistance and anti-apoptotic effects in prostatic cancer cells. Prostate 2004 ; 60 : 120–129. [CrossRef] [PubMed] [Google Scholar]
  32. Chalmin F, Ladoire S, Mignot G, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 2010 ; 120 : 457–471. [PubMed] [Google Scholar]
  33. Menetrier-Caux C, Montmain G, Dieu MC, et al. Inhibition of the differentiation of dendritic cells from CD34+ progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 1998 ; 92 : 4778–4791. [PubMed] [Google Scholar]
  34. Nikiteas NI, Tzanakis N, Gazouli M, et al. Serum IL-6, TNFalpha and CRP levels in Greek colorectal cancer patients: prognostic implications. World J Gastroenterol 2005 ; 11 : 1639–1643. [PubMed] [Google Scholar]
  35. Ghiringhelli F, Apetoh L, Tesniere A, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 2009 ; 15 : 1170–1178. [CrossRef] [PubMed] [Google Scholar]
  36. Bunt SK, Yang L, Sinha P, et al. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 2007 ; 67 : 10019–10026. [CrossRef] [PubMed] [Google Scholar]
  37. Bruchard M, Mignot G, Derangère V, et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 2013 ; 19 : 57–64. [CrossRef] [PubMed] [Google Scholar]
  38. Fridman WH, Sautès-Fridman C. Le microenvironnement tumoral : matrice nourricière, champ de bataille etcible thérapeutique des cancers. Med Sci (Paris) 2014 ; 30 : 359–365. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Provot S. Contrôle de la croissance et de la dissémination tumorales par le microenvironnement : certitudes et hypothèses émergentes. Med Sci (Paris) 2014 ; 30 : 366–371. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Razungles J, Cavaillès V, Jalaguier S, Teyssier C. L’effet Warburg. Med Sci (Paris) 2013 ; 29 : 1026–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Hasmim M, Messai Y, Noman MZ, Chouaib S. L’hypoxie tumorale : un déterminant clé de la réactivité stromale et de la réponse antitumorale. Med Sci (Paris) 2014 ; 30 : 422–428. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Hubert S, Abastado JP. Les étapes précoces du processus métastatique. Med Sci (Paris) 2014 ; 30 : 378–384. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Azzi S, Gavard J. Vaisseaux sanguins et tumeurs ou l’art du dialogue. Med Sci (Paris) 2014 ; 30 : 408–414. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Galon J, Bindea G, Mlecnik B, et al. Microenvironnement immunitaire et cancer : intérêt de l’Immunoscore pour prédire l’évolution clinique. Med Sci (Paris) 2014 ; 30 : 339–344. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Borriello L, DeClerck YA. Le microenvironnement tumoral et la résistance thérapeutique. Med Sci (Paris) 2014 ; 30 : 445–451. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Jamilloux Y, Henry T. Les inflammasomes. Plates-formes de l’immunité innée. Med Sci (Paris) 2013 ; 29 : 975–984. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.