Free Access
Issue
Med Sci (Paris)
Volume 30, Number 4, Avril 2014
Page(s) 429 - 435
Section Microenvironnements tumoraux : conflictuels et complémentaires
DOI https://doi.org/10.1051/medsci/20143004018
Published online 05 May 2014
  1. Hanahan D, Weinberg RA., Hallmarks of cancer: the next generation. Cell 2011 ; 144 : 64674. [CrossRef] [PubMed] [Google Scholar]
  2. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 2005 ; 6 : 611–622. [CrossRef] [PubMed] [Google Scholar]
  3. Warburg O. On the origin of cancer cells. Science 1956 ; 123 : 309–314. [CrossRef] [PubMed] [Google Scholar]
  4. Klymkowsky MW, Savagner P. Epithelial-mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am J Pathol 2009 ; 174 : 1588–1593. [CrossRef] [PubMed] [Google Scholar]
  5. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996 ; 86 : 353–364. [CrossRef] [PubMed] [Google Scholar]
  6. Ferrara N. Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev 2010 ; 21 : 21–26. [CrossRef] [PubMed] [Google Scholar]
  7. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010 ; 140 : 883–899. [CrossRef] [PubMed] [Google Scholar]
  8. Garcia-Lora A, Algarra I, Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 2003 ; 195 : 346–355. [CrossRef] [PubMed] [Google Scholar]
  9. Ghiringhelli F, Larmonier N, Schmitt E, et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 2004 ; 34 : 336–344. [CrossRef] [PubMed] [Google Scholar]
  10. Weiss JM, Bilate AM, Gobert M, et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med 2012 ; 209 : 1723–1742. [CrossRef] [PubMed] [Google Scholar]
  11. Ghiringhelli F, Ménard C, Terme M, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 2005 ; 202 : 1075–1085. [CrossRef] [PubMed] [Google Scholar]
  12. Ladoire S, Martin F, Ghiringhelli F. Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother 2011 ; 60 : 909–918. [CrossRef] [PubMed] [Google Scholar]
  13. Badoual C, Hans S, Rodriguez J, et al. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res 2006 ; 12 : 465–472. [CrossRef] [PubMed] [Google Scholar]
  14. Carreras J, Lopez-Guillermo A, Fox BC, et al. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 2006 ; 108 : 2957–2964. [CrossRef] [PubMed] [Google Scholar]
  15. Crome SQ, Clive B, Wang AW, et al. Inflammatory effects of ex vivo human Th17 cells are suppressed by regulatory T cells. J Immunol 2010 ; 185 : 3199–3208. [CrossRef] [PubMed] [Google Scholar]
  16. Martin F, Apetoh L, Ghiringhelli F. Controversies on the role of Th17 in cancer: a TGF-beta-dependent immunosuppressive activity? Trends Mol Med 2012 ; 18 : 742–749. [CrossRef] [PubMed] [Google Scholar]
  17. Nunez S, Saez JJ, Fernandez D, et al. Th17 cells contribute to anti-tumor immunity and promote the recruitment of th1 cells to the tumor. Immunology 2012 ; 139 : 61–71. [CrossRef] [Google Scholar]
  18. Chalmin F, Mignot G, Bruchard M, et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 2012 ; 36 : 362–373. [CrossRef] [PubMed] [Google Scholar]
  19. Mantovani A. Molecular pathways linking inflammation and cancer. Curr Mol Med 2010 ; 10 : 369–373. [CrossRef] [PubMed] [Google Scholar]
  20. Hestdal K, Ruscetti FW, Ihle JN, et al. Characterization and regulation of RB6–8C5 antigen expression on murine bone marrow cells. J Immunol 1991 ; 147 : 22–28. [PubMed] [Google Scholar]
  21. Movahedi K, Guilliams M, Van den Bossche J, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 2008 ; 111 : 4233–4244. [CrossRef] [PubMed] [Google Scholar]
  22. O’Garra A, Vieira P. Regulatory T cells and mechanisms of immune system control. Nat Med 2004 ; 10 : 801–805. [CrossRef] [PubMed] [Google Scholar]
  23. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001 ; 19 : 683–765. [CrossRef] [PubMed] [Google Scholar]
  24. Connolly EC, Akhurst RJ. The complexities of TGF-beta action during mammary and squamous cell carcinogenesis. Curr Pharm Biotechnol 2011 ; 12 : 2138–2149. [CrossRef] [PubMed] [Google Scholar]
  25. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P. The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 2010 ; 10 : 554–567. [CrossRef] [PubMed] [Google Scholar]
  26. Regateiro FS, Howic D, Nolan KF, et al. Generation of anti-inflammatory adenosine by leukocytes is regulated by TGF-beta. Eur J Immunol 2011 ; 41 : 2955–2965. [CrossRef] [PubMed] [Google Scholar]
  27. Kalinski P, Hilkens CM, Snijders A, et al. IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J Immunol 1997 ; 159 : 28–35. [PubMed] [Google Scholar]
  28. Mailliard RB, Alber SM, Shen H, et al. IL-18-induced CD83+CCR7+ NK helper cells. J Exp Med 2005 ; 202 : 941–953. [CrossRef] [PubMed] [Google Scholar]
  29. Kalinski P. Regulation of immune responses by prostaglandin E2. J Immunol 2012 ; 188 : 21–28. [CrossRef] [PubMed] [Google Scholar]
  30. Dankbar B, Padro T, Leo R, et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 2000 ; 95 : 2630–2636. [PubMed] [Google Scholar]
  31. Pu YS, Hour TC, Chuang SE, et al. Interleukin-6 is responsible for drug resistance and anti-apoptotic effects in prostatic cancer cells. Prostate 2004 ; 60 : 120–129. [CrossRef] [PubMed] [Google Scholar]
  32. Chalmin F, Ladoire S, Mignot G, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 2010 ; 120 : 457–471. [PubMed] [Google Scholar]
  33. Menetrier-Caux C, Montmain G, Dieu MC, et al. Inhibition of the differentiation of dendritic cells from CD34+ progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 1998 ; 92 : 4778–4791. [PubMed] [Google Scholar]
  34. Nikiteas NI, Tzanakis N, Gazouli M, et al. Serum IL-6, TNFalpha and CRP levels in Greek colorectal cancer patients: prognostic implications. World J Gastroenterol 2005 ; 11 : 1639–1643. [PubMed] [Google Scholar]
  35. Ghiringhelli F, Apetoh L, Tesniere A, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 2009 ; 15 : 1170–1178. [CrossRef] [PubMed] [Google Scholar]
  36. Bunt SK, Yang L, Sinha P, et al. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 2007 ; 67 : 10019–10026. [CrossRef] [PubMed] [Google Scholar]
  37. Bruchard M, Mignot G, Derangère V, et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 2013 ; 19 : 57–64. [CrossRef] [PubMed] [Google Scholar]
  38. Fridman WH, Sautès-Fridman C. Le microenvironnement tumoral : matrice nourricière, champ de bataille etcible thérapeutique des cancers. Med Sci (Paris) 2014 ; 30 : 359–365. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Provot S. Contrôle de la croissance et de la dissémination tumorales par le microenvironnement : certitudes et hypothèses émergentes. Med Sci (Paris) 2014 ; 30 : 366–371. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Razungles J, Cavaillès V, Jalaguier S, Teyssier C. L’effet Warburg. Med Sci (Paris) 2013 ; 29 : 1026–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Hasmim M, Messai Y, Noman MZ, Chouaib S. L’hypoxie tumorale : un déterminant clé de la réactivité stromale et de la réponse antitumorale. Med Sci (Paris) 2014 ; 30 : 422–428. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Hubert S, Abastado JP. Les étapes précoces du processus métastatique. Med Sci (Paris) 2014 ; 30 : 378–384. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Azzi S, Gavard J. Vaisseaux sanguins et tumeurs ou l’art du dialogue. Med Sci (Paris) 2014 ; 30 : 408–414. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Galon J, Bindea G, Mlecnik B, et al. Microenvironnement immunitaire et cancer : intérêt de l’Immunoscore pour prédire l’évolution clinique. Med Sci (Paris) 2014 ; 30 : 339–344. [Google Scholar]
  45. Borriello L, DeClerck YA. Le microenvironnement tumoral et la résistance thérapeutique. Med Sci (Paris) 2014 ; 30 : 445–451. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Jamilloux Y, Henry T. Les inflammasomes. Plates-formes de l’immunité innée. Med Sci (Paris) 2013 ; 29 : 975–984. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.