Open Access
Issue
Med Sci (Paris)
Volume 40, Number 5, Mai 2024
Page(s) 428 - 436
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024050
Published online 31 May 2024
  1. Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017 ; 9 : 7204–7218. [Google Scholar]
  2. Evans SS, Repasky EA, Fisher DT. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 2015 ; 15 : 335–349. [CrossRef] [PubMed] [Google Scholar]
  3. Daguindau E, Chagué C, Saas P. Maladie du greffon contre l’hôte - Les bienfaits du « bon » cholestérol. Med Sci (Paris) 2023; 39 : 418–21. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013 ; 13 : 159–175. [CrossRef] [PubMed] [Google Scholar]
  5. Granger V, de Chaisemartin L, Chollet-Martin S. La pêche miraculeuse des filets du neutrophile. Med Sci (Paris) 2014 ; 30 : 544–549. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Watanabe S, Alexander M, Misharin AV, et al. The role of macrophages in the resolution of inflammation. J Clin Invest 2019 ; 129 : 2619–2628. [CrossRef] [PubMed] [Google Scholar]
  7. Delamarre L, Pack M, Chang H, et al. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 2005 ; 307 : 1630–1634. [CrossRef] [PubMed] [Google Scholar]
  8. Arandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 2015 ; 16 : 907–917. [CrossRef] [PubMed] [Google Scholar]
  9. Cabon L, Martinez-Torres A-C, Susin SA. La mort cellulaire programmée ne manque pas de vocabulaire. Med Sci (Paris) 2013 ; 29 : 1117–1124. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Rongvaux A, Jackson R, Harman CCD, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 2014 ; 159 : 1563–1577. [CrossRef] [PubMed] [Google Scholar]
  11. White MJ, McArthur K, Metcalf D, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 2014 ; 159 : 1549–1562. [CrossRef] [PubMed] [Google Scholar]
  12. Savill JS, Wyllie AH, Henson JE, et al. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest 1989 ; 83 : 865–875. [CrossRef] [PubMed] [Google Scholar]
  13. Voll RE, Herrmann M, Roth EA, et al. Immunosuppressive effects of apoptotic cells. Nature 1997 ; 390 : 350–351. [CrossRef] [PubMed] [Google Scholar]
  14. Fadok VA, Bratton DL, Konowal A, et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998 ; 101 : 890–898. [CrossRef] [PubMed] [Google Scholar]
  15. Bittencourt MC, Perruche S, Contassot E, et al. Intravenous injection of apoptotic leukocytes enhances bone marrow engraftment across major histocompatibility barriers. Blood 2001 ; 98 : 224–230. [CrossRef] [PubMed] [Google Scholar]
  16. Golpon HA, Fadok VA, Taraseviciene-Stewart L, et al. Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. FASEB J 2004 ; 18 : 1716–1718. [CrossRef] [PubMed] [Google Scholar]
  17. Green DR, Oguin TH, Martinez J. The clearance of dying cells: table for two. Cell Death Differ 2016 ; 23 : 915–926. [CrossRef] [PubMed] [Google Scholar]
  18. Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol 2008 ; 8 : 279–289. [CrossRef] [PubMed] [Google Scholar]
  19. Saas P, Vetter M, Maraux M, et al. Resolution therapy: Harnessing efferocytic macrophages to trigger the resolution of inflammation. Front Immunol 2022; 13 : 1021413. [CrossRef] [PubMed] [Google Scholar]
  20. Bournazou I, Pound JD, Duffin R, et al. Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J Clin Invest 2009 ; 119 : 20–32. [PubMed] [Google Scholar]
  21. Kawano M, Nagata S. Efferocytosis and autoimmune disease. Int Immunol 2018 ; 30 : 551–558. [CrossRef] [PubMed] [Google Scholar]
  22. Lemke G.. How macrophages deal with death. Nat Rev Immunol 2019 ; 19 : 539–549. [CrossRef] [PubMed] [Google Scholar]
  23. Martin CJ, Peters KN, Behar SM. Macrophages Clean Up: Efferocytosis and Microbial Control. Curr Opin Microbiol 2014 ; 0 : 17–23. [CrossRef] [PubMed] [Google Scholar]
  24. Elliott MR, Koster KM, Murphy PS. Efferocytosis Signaling in the Regulation of Macrophage Inflammatory Responses. J Immunol 2017 ; 198 : 1387–1394. [CrossRef] [PubMed] [Google Scholar]
  25. Savill J, Hogg N, Ren Y, et al. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 1992 ; 90 : 1513–1522. [CrossRef] [PubMed] [Google Scholar]
  26. Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009 ; 138 : 286–299. [CrossRef] [PubMed] [Google Scholar]
  27. Doran AC, Yurdagul A, Tabas I. Efferocytosis in health and disease. Nat Rev Immunol 2020; 20 : 254–67. [CrossRef] [PubMed] [Google Scholar]
  28. Arif Yurdagul J, Subramanian M, Wang X, et al. Macrophage Metabolism of Apoptotic Cell-Derived Arginine Promotes Continual Efferocytosis and Resolution of Injury. Cell metabolism 2020; 31 : 518. [CrossRef] [PubMed] [Google Scholar]
  29. Perretti M, Leroy X, Bland EJ, et al. Resolution Pharmacology: Opportunities for Therapeutic Innovation in Inflammation. Trends Pharmacol Sci 2015 ; 36 : 737–755. [Google Scholar]
  30. Ariel A, Fredman G, Sun Y-P, et al. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nat Immunol 2006 ; 7 : 1209–1216. [CrossRef] [PubMed] [Google Scholar]
  31. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014 ; 510 : 92–101. [CrossRef] [PubMed] [Google Scholar]
  32. Perretti M, Cooper D, Dalli J, et al. Immune resolution mechanisms in inflammatory arthritis. Nat Rev Rheumatol 2017 ; 13 : 87–99. [CrossRef] [PubMed] [Google Scholar]
  33. Martin-Rodriguez O, Gauthier T, Bonnefoy F, et al. Pro-Resolving Factors Released by Macrophages After Efferocytosis Promote Mucosal Wound Healing in Inflammatory Bowel Disease. Front Immunol 2021; 12 : 754475. [CrossRef] [PubMed] [Google Scholar]
  34. Nathan C, Ding A. Nonresolving inflammation. Cell 2010 ; 140 : 871–882. [CrossRef] [PubMed] [Google Scholar]
  35. Cohen PL, Caricchio R, Abraham V, et al. Delayed Apoptotic Cell Clearance and Lupus-like Autoimmunity in Mice Lacking the c-mer Membrane Tyrosine Kinase. J Exp Med 2002 ; 196 : 135–140. [CrossRef] [PubMed] [Google Scholar]
  36. Kawane K, Tanaka H, Kitahara Y, et al. Cytokine-dependent but acquired immunity-independent arthritis caused by DNA escaped from degradation. Proc Natl Acad Sci U S A 2010 ; 107 : 19432–19437. [CrossRef] [PubMed] [Google Scholar]
  37. Perretti M, D’Acquisto F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 2009 ; 9 : 62–70. [CrossRef] [PubMed] [Google Scholar]
  38. Kourtzelis I, Li X, Mitroulis I, et al. DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat Immunol 2019 ; 20 : 40–49. [CrossRef] [PubMed] [Google Scholar]
  39. Perruche S, Saas P. « Mort sur ordonnance » ou comment l’anticorps anti-CD3 utilise l’apoptose pour induire la tolérance. Med Sci (Paris) 2009 ; 25 : 325–327. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Bonnefoy F, Gauthier T, Vallion R, et al. Factors Produced by Macrophages Eliminating Apoptotic Cells Demonstrate Pro-Resolutive Properties and Terminate Ongoing Inflammation. Front Immunol 2018 ; 9 : 2586. [CrossRef] [PubMed] [Google Scholar]
  41. Mevorach D, Zuckerman T, Reiner I, et al. Single infusion of donor mononuclear early apoptotic cells as prophylaxis for graft-versus-host disease in myeloablative HLA-matched allogeneic bone marrow transplantation: a phase I/IIa clinical trial. Biol Blood Marrow Transplant 2014 ; 20 : 58–65. [CrossRef] [PubMed] [Google Scholar]
  42. Sulciner ML, Serhan CN, Gilligan MM, et al. Resolvins suppress tumor growth and enhance cancer therapy. J Exp Med 2018 ; 215 : 115–140. [CrossRef] [PubMed] [Google Scholar]
  43. Wetzel A, Bonnefoy F, Chagué C, et al. Pro-Resolving Factor Administration Limits Cancer Progression by Enhancing Immune Response Against Cancer Cells. Front Immunol 2021; 12 : 812171. [Google Scholar]
  44. Kazama H, Ricci J-E, Herndon JM, et al. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 2008 ; 29 : 21–32. [CrossRef] [PubMed] [Google Scholar]
  45. Medina CB, Mehrotra P, Arandjelovic S, et al. Metabolites released from apoptotic cells act as tissue messengers. Nature 2020; 580 : 130–5. [CrossRef] [PubMed] [Google Scholar]
  46. Saas P, Chagué C, Maraux M, et al. Toward the Characterization of Human Pro-Resolving Macrophages? Front Immunol 2020; 11 : 593300. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.