Open Access
Numéro |
Med Sci (Paris)
Volume 40, Numéro 5, Mai 2024
|
|
---|---|---|
Page(s) | 428 - 436 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2024050 | |
Publié en ligne | 31 mai 2024 |
- Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017 ; 9 : 7204–7218. [Google Scholar]
- Evans SS, Repasky EA, Fisher DT. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 2015 ; 15 : 335–349. [CrossRef] [PubMed] [Google Scholar]
- Daguindau E, Chagué C, Saas P. Maladie du greffon contre l’hôte - Les bienfaits du « bon » cholestérol. Med Sci (Paris) 2023; 39 : 418–21. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013 ; 13 : 159–175. [CrossRef] [PubMed] [Google Scholar]
- Granger V, de Chaisemartin L, Chollet-Martin S. La pêche miraculeuse des filets du neutrophile. Med Sci (Paris) 2014 ; 30 : 544–549. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Watanabe S, Alexander M, Misharin AV, et al. The role of macrophages in the resolution of inflammation. J Clin Invest 2019 ; 129 : 2619–2628. [CrossRef] [PubMed] [Google Scholar]
- Delamarre L, Pack M, Chang H, et al. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 2005 ; 307 : 1630–1634. [CrossRef] [PubMed] [Google Scholar]
- Arandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 2015 ; 16 : 907–917. [CrossRef] [PubMed] [Google Scholar]
- Cabon L, Martinez-Torres A-C, Susin SA. La mort cellulaire programmée ne manque pas de vocabulaire. Med Sci (Paris) 2013 ; 29 : 1117–1124. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Rongvaux A, Jackson R, Harman CCD, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 2014 ; 159 : 1563–1577. [CrossRef] [PubMed] [Google Scholar]
- White MJ, McArthur K, Metcalf D, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 2014 ; 159 : 1549–1562. [CrossRef] [PubMed] [Google Scholar]
- Savill JS, Wyllie AH, Henson JE, et al. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest 1989 ; 83 : 865–875. [CrossRef] [PubMed] [Google Scholar]
- Voll RE, Herrmann M, Roth EA, et al. Immunosuppressive effects of apoptotic cells. Nature 1997 ; 390 : 350–351. [CrossRef] [PubMed] [Google Scholar]
- Fadok VA, Bratton DL, Konowal A, et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998 ; 101 : 890–898. [CrossRef] [PubMed] [Google Scholar]
- Bittencourt MC, Perruche S, Contassot E, et al. Intravenous injection of apoptotic leukocytes enhances bone marrow engraftment across major histocompatibility barriers. Blood 2001 ; 98 : 224–230. [CrossRef] [PubMed] [Google Scholar]
- Golpon HA, Fadok VA, Taraseviciene-Stewart L, et al. Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. FASEB J 2004 ; 18 : 1716–1718. [CrossRef] [PubMed] [Google Scholar]
- Green DR, Oguin TH, Martinez J. The clearance of dying cells: table for two. Cell Death Differ 2016 ; 23 : 915–926. [CrossRef] [PubMed] [Google Scholar]
- Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol 2008 ; 8 : 279–289. [CrossRef] [PubMed] [Google Scholar]
- Saas P, Vetter M, Maraux M, et al. Resolution therapy: Harnessing efferocytic macrophages to trigger the resolution of inflammation. Front Immunol 2022; 13 : 1021413. [CrossRef] [PubMed] [Google Scholar]
- Bournazou I, Pound JD, Duffin R, et al. Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J Clin Invest 2009 ; 119 : 20–32. [PubMed] [Google Scholar]
- Kawano M, Nagata S. Efferocytosis and autoimmune disease. Int Immunol 2018 ; 30 : 551–558. [CrossRef] [PubMed] [Google Scholar]
- Lemke G.. How macrophages deal with death. Nat Rev Immunol 2019 ; 19 : 539–549. [CrossRef] [PubMed] [Google Scholar]
- Martin CJ, Peters KN, Behar SM. Macrophages Clean Up: Efferocytosis and Microbial Control. Curr Opin Microbiol 2014 ; 0 : 17–23. [CrossRef] [PubMed] [Google Scholar]
- Elliott MR, Koster KM, Murphy PS. Efferocytosis Signaling in the Regulation of Macrophage Inflammatory Responses. J Immunol 2017 ; 198 : 1387–1394. [CrossRef] [PubMed] [Google Scholar]
- Savill J, Hogg N, Ren Y, et al. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 1992 ; 90 : 1513–1522. [CrossRef] [PubMed] [Google Scholar]
- Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009 ; 138 : 286–299. [CrossRef] [PubMed] [Google Scholar]
- Doran AC, Yurdagul A, Tabas I. Efferocytosis in health and disease. Nat Rev Immunol 2020; 20 : 254–67. [CrossRef] [PubMed] [Google Scholar]
- Arif Yurdagul J, Subramanian M, Wang X, et al. Macrophage Metabolism of Apoptotic Cell-Derived Arginine Promotes Continual Efferocytosis and Resolution of Injury. Cell metabolism 2020; 31 : 518. [CrossRef] [PubMed] [Google Scholar]
- Perretti M, Leroy X, Bland EJ, et al. Resolution Pharmacology: Opportunities for Therapeutic Innovation in Inflammation. Trends Pharmacol Sci 2015 ; 36 : 737–755. [CrossRef] [PubMed] [Google Scholar]
- Ariel A, Fredman G, Sun Y-P, et al. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nat Immunol 2006 ; 7 : 1209–1216. [CrossRef] [PubMed] [Google Scholar]
- Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014 ; 510 : 92–101. [CrossRef] [PubMed] [Google Scholar]
- Perretti M, Cooper D, Dalli J, et al. Immune resolution mechanisms in inflammatory arthritis. Nat Rev Rheumatol 2017 ; 13 : 87–99. [CrossRef] [PubMed] [Google Scholar]
- Martin-Rodriguez O, Gauthier T, Bonnefoy F, et al. Pro-Resolving Factors Released by Macrophages After Efferocytosis Promote Mucosal Wound Healing in Inflammatory Bowel Disease. Front Immunol 2021; 12 : 754475. [CrossRef] [PubMed] [Google Scholar]
- Nathan C, Ding A. Nonresolving inflammation. Cell 2010 ; 140 : 871–882. [CrossRef] [PubMed] [Google Scholar]
- Cohen PL, Caricchio R, Abraham V, et al. Delayed Apoptotic Cell Clearance and Lupus-like Autoimmunity in Mice Lacking the c-mer Membrane Tyrosine Kinase. J Exp Med 2002 ; 196 : 135–140. [CrossRef] [PubMed] [Google Scholar]
- Kawane K, Tanaka H, Kitahara Y, et al. Cytokine-dependent but acquired immunity-independent arthritis caused by DNA escaped from degradation. Proc Natl Acad Sci U S A 2010 ; 107 : 19432–19437. [CrossRef] [PubMed] [Google Scholar]
- Perretti M, D’Acquisto F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 2009 ; 9 : 62–70. [CrossRef] [PubMed] [Google Scholar]
- Kourtzelis I, Li X, Mitroulis I, et al. DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat Immunol 2019 ; 20 : 40–49. [CrossRef] [PubMed] [Google Scholar]
- Perruche S, Saas P. « Mort sur ordonnance » ou comment l’anticorps anti-CD3 utilise l’apoptose pour induire la tolérance. Med Sci (Paris) 2009 ; 25 : 325–327. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Bonnefoy F, Gauthier T, Vallion R, et al. Factors Produced by Macrophages Eliminating Apoptotic Cells Demonstrate Pro-Resolutive Properties and Terminate Ongoing Inflammation. Front Immunol 2018 ; 9 : 2586. [CrossRef] [PubMed] [Google Scholar]
- Mevorach D, Zuckerman T, Reiner I, et al. Single infusion of donor mononuclear early apoptotic cells as prophylaxis for graft-versus-host disease in myeloablative HLA-matched allogeneic bone marrow transplantation: a phase I/IIa clinical trial. Biol Blood Marrow Transplant 2014 ; 20 : 58–65. [CrossRef] [PubMed] [Google Scholar]
- Sulciner ML, Serhan CN, Gilligan MM, et al. Resolvins suppress tumor growth and enhance cancer therapy. J Exp Med 2018 ; 215 : 115–140. [CrossRef] [PubMed] [Google Scholar]
- Wetzel A, Bonnefoy F, Chagué C, et al. Pro-Resolving Factor Administration Limits Cancer Progression by Enhancing Immune Response Against Cancer Cells. Front Immunol 2021; 12 : 812171. [Google Scholar]
- Kazama H, Ricci J-E, Herndon JM, et al. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 2008 ; 29 : 21–32. [CrossRef] [PubMed] [Google Scholar]
- Medina CB, Mehrotra P, Arandjelovic S, et al. Metabolites released from apoptotic cells act as tissue messengers. Nature 2020; 580 : 130–5. [CrossRef] [PubMed] [Google Scholar]
- Saas P, Chagué C, Maraux M, et al. Toward the Characterization of Human Pro-Resolving Macrophages? Front Immunol 2020; 11 : 593300. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.