Open Access
Numéro |
Med Sci (Paris)
Volume 40, Numéro 5, Mai 2024
|
|
---|---|---|
Page(s) | 421 - 427 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2024046 | |
Publié en ligne | 31 mai 2024 |
- Boccaletto P, Stefaniak F, Ray A, et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res 2022; 50 : D231–5. [Google Scholar]
- Linder B, JaffreySR. Discovering and Mapping the Modified Nucleotides That Comprise the Epitranscriptome of mRNA. Cold Spring Harb. Perspect. Biol 2019 ; 11 : a032201. [CrossRef] [Google Scholar]
- Netzband R, Pager CT. Epitranscriptomic marks: Emerging modulators of RNA virus gene expression. WIREs RNA 2020; 11 : e1576. [CrossRef] [PubMed] [Google Scholar]
- Lichinchi G, Gao S, Saletore Y, et al. Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol 2016 ; 1 : 16011. [CrossRef] [PubMed] [Google Scholar]
- Courtney DG, Tsai K, Bogerd HP, et al. Epitranscriptomic Addition of m5C to HIV-1 Transcripts Regulates Viral Gene Expression. Cell Host Microbe 2019 ; 26 : 217–27.e6. [CrossRef] [PubMed] [Google Scholar]
- Doria M, Neri F, Gallo A, et al. Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection. Nucleic Acids Res 2009 ; 37 : 5848–5858. [Google Scholar]
- Phuphuakrat A, Kraiwong R, Boonarkart C, et al. Double-stranded RNA adenosine deaminases enhance expression of human immunodeficiency virus type 1 proteins. J Virol 2008 ; 82 : 10864–10872. [CrossRef] [Google Scholar]
- Ringeard M, Marchand V, Decroly E, et al. FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature 2019 ; 565 : 500–504. [CrossRef] [PubMed] [Google Scholar]
- Smietanski M, Werner M, Purta E, et al. Structural analysis of human 2′-O-ribose methyltransferases involved in mRNA cap structure formation. Nat Commun 2014 ; 5 : 3004. [CrossRef] [PubMed] [Google Scholar]
- Zhou M, Deng L, Kashanchi F, et al. The Tat/TAR-dependent phosphorylation of RNA polymerase II C-terminal domain stimulates cotranscriptional capping of HIV-1 mRNA. Proc Natl Acad Sci USA 2003 ; 100 : 12666–12671. [CrossRef] [PubMed] [Google Scholar]
- Yedavalli VSRK, Jeang K-T. Trimethylguanosine capping selectively promotes expression of Rev-dependent HIV-1 RNAs. Proc Natl Acad Sci USA 2010 ; 107 : 14787–14792. [CrossRef] [PubMed] [Google Scholar]
- Bélanger F, Stepinski J, Darzynkiewicz E, et al. Characterization of hMTr1, a Human Cap1 2′-O-Ribose Methyltransferase. J Biol Chem 2010 ; 285 : 33037–33044. [CrossRef] [PubMed] [Google Scholar]
- Hsu PC, Hodel MR, Thomas JW, et al. Structural requirements for the specific recognition of an m7G mRNA cap. Biochemistry 2000 ; 39 : 13730–13736. [CrossRef] [PubMed] [Google Scholar]
- Devarkar SC, Wang C, Miller MT, et al. Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc Natl Acad Sci USA 2016 ; 113 : 596–601. [CrossRef] [PubMed] [Google Scholar]
- Züst R, Dong H, Li X-F, et al. Rational design of a live attenuated dengue vaccine: 2′-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques. PLoS Pathog 2013 ; 9 : e1003521. [CrossRef] [PubMed] [Google Scholar]
- Hornung V, Ellegast J, Kim S, et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 2006 ; 314 : 994–997. [CrossRef] [PubMed] [Google Scholar]
- Daffis S, Szretter KJ, Schriewer J, et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 2010 ; 468 : 452–456. [CrossRef] [PubMed] [Google Scholar]
- Abbas YM, Laudenbach BT, Martínez-Montero S, et al. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations. Proc Natl Acad Sci USA 2017 ; 114 : E2106–E2115. [CrossRef] [PubMed] [Google Scholar]
- Espert L, Degols G, Lin Y-L, et al. Interferon-induced exonuclease ISG20 exhibits an antiviral activity against human immunodeficiency virus type 1. J Gen Virol 2005 ; 86 : 2221–2229. [CrossRef] [PubMed] [Google Scholar]
- El Kazzi P, Rabah N, Chamontin C, et al. Internal RNA 2′O-methylation in the HIV-1 genome counteracts ISG20 nuclease-mediated antiviral effect. Nucleic Acids Res 2023; 51 : 2501–15. [Google Scholar]
- Decombe A, Peersen O, Sutto-Ortiz P, et al. Internal RNA 2′-O-methylation on the HIV-1 genome impairs reverse transcription. Nucleic Acids Res 2023; gkad1134. [Google Scholar]
- Maden BEH. Mapping 2′-O-Methyl Groups in Ribosomal RNA. Methods 2001 ; 25 : 374–382. [CrossRef] [PubMed] [Google Scholar]
- Decombe A, El Kazzi P, Decroly E. Interplay of RNA 2′-O-methylations with viral replication. Curr Opin Virol 2023; 59 : 101302. [CrossRef] [PubMed] [Google Scholar]
- Salvetti A. Épitranscriptome. Med Sci (Paris) 2024; 40 : 287. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Rousseaux N, Andrieux L. Un facteur antiviral qui discrimine la traduction du soi et du non-soi. Med Sci (Paris) 2021; 37 : 1070–2. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Chardès B, Lucifora J, Salvetti A. La protéine ISG20, un nouveau facteur de restriction contre le virus de l’hépatite B ? Med Sci (Paris) 2018; 34 : 388–91. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.