Open Access
Numéro |
Med Sci (Paris)
Volume 40, Numéro 5, Mai 2024
|
|
---|---|---|
Page(s) | 437 - 444 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2024054 | |
Publié en ligne | 31 mai 2024 |
- Guedan S, Ruella M, June CH. Emerging Cellular Therapies for Cancer. Annu Rev Immunol 2019 ; 37 : 145–171. [CrossRef] [PubMed] [Google Scholar]
- Asmamaw Dejenie T, Tiruneh G/Medhin M, Dessie Terefe G, et al. Current updates on generations, approvals, and clinical trials of CAR T-cell therapy. Human Vaccines & Immunotherapeutics 2022; 0 : 2114254. [CrossRef] [PubMed] [Google Scholar]
- Detela G, Lodge A. EU Regulatory Pathways for ATMPs: Standard, Accelerated and Adaptive Pathways to Marketing Authorisation. Molecular Therapy - Methods & Clinical Development 2019 ; 13 : 205–232. [CrossRef] [Google Scholar]
- Catros V.. Les CAR-T cells, des cellules tueuses spécifiques d’antigènes tumoraux - De nouvelles générations pour le traitement des tumeurs solides. Med Sci (Paris) 2019 ; 35 : 316–326. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Xie M, Fussenegger M. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat Rev Mol Cell Biol 2018 ; 19 : 507–525. [CrossRef] [PubMed] [Google Scholar]
- Morel M.. Des gènes synthétiques à l’assaut du cancer - Vers des traitements plus efficaces grâce à des programmes génétiques autonomes. Med Sci (Paris) 2017 ; 33 : 591–593. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Chakraborty D, Rengaswamy R, Raman K. Designing Biological Circuits: From Principles to Applications. ACS Synth. Biol. 2022; 11 : 1377–88. [CrossRef] [Google Scholar]
- Yu Y, Yu G, Ye H. Constructing Smartphone-Controlled Optogenetic Switches in Mammalian Cells. Methods Mol Biol 2021; 2312 : 125–39. [CrossRef] [PubMed] [Google Scholar]
- Huang J, Xue S, Buchmann P, et al. An electrogenetic interface to program mammalian gene expression by direct current. Nat Metabol 2023; 5 : 1395–407. [CrossRef] [Google Scholar]
- Maity D, Guha Ray P, Buchmann P, et al. Blood-Glucose-Powered Metabolic Fuel Cell for Self-Sufficient Bioelectronics. Adv Mater 2023; 35 : e2300890. [CrossRef] [PubMed] [Google Scholar]
- Bashor CJ, Hilton IB, Bandukwala H, et al. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov 2022; 21 : 655–75. [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Bai P, Woischnig A-Ket al. Immunomimetic Designer Cells Protect Mice from MRSA Infection. Cell 2018 ; 174 : 259–70.e11. [CrossRef] [PubMed] [Google Scholar]
- Xie M, Ye H, Wang Het al. β-cell-mimetic designer cells provide closed-loop glycemic control. Science 2016 ; 354 : 1296–1301. [CrossRef] [PubMed] [Google Scholar]
- Giraudot C. Un exemple de circuit synthétique de gènes reposant sur le principe de la boucle fermée pour réguler une maladie métabolique [Thèse de doctorat vétérinaire]. Lyon : Université Claude Bernard Lyon I. 2023. [Google Scholar]
- Wiener N. Cybernetics or Control and Communication in the Animal and the Machine. The MIT Press, 1948 : 194 p. [Google Scholar]
- Leelarathna L, Choudhary P, Wilmot EG, et al. Hybrid closed-loop therapy: Where are we in 2021? Diabetes Obes Metab 2021; 23 : 655–60. [CrossRef] [PubMed] [Google Scholar]
- Bekiari E, Kitsios K, Thabit Het al. Artificial pancreas treatment for outpatients with type 1 diabetes: systematic review and meta-analysis. BMJ 2018 ; 361 : k1310. [CrossRef] [PubMed] [Google Scholar]
- Kemmer C, Gitzinger M, Daoud-El Baba Met al. Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat Biotechnol 2010 ; 28 : 355–360. [CrossRef] [PubMed] [Google Scholar]
- Rössger K, Charpin-El-Hamri G, Fussenegger M. A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nat Commun 2013 ; 4 : 2825. [CrossRef] [PubMed] [Google Scholar]
- Saxena P, Charpin-El Hamri G, Folcher Met al. Synthetic gene network restoring endogenous pituitary-thyroid feedback control in experimental Graves’ disease. Proc Natl Acad Sci U S A 2016 ; 113 : 1244–1249. [CrossRef] [PubMed] [Google Scholar]
- Stefanov B-A, Fussenegger M. Biomarker-driven feedback control of synthetic biology systems for next-generation personalized medicine. Front Bioeng Biotechnol 2022; 10 : 986210. [CrossRef] [PubMed] [Google Scholar]
- Jan M, Scarfò I, Larson RC, et al. Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci Transl Med 2021; 13 : eabb6295. [CrossRef] [PubMed] [Google Scholar]
- Xue S, Yin J, Shao J, et al. A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes. Mol Ther 2017 ; 25 : 443–455. [CrossRef] [PubMed] [Google Scholar]
- Ye H, Xie M, Xue S, et al. Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat Biomed Eng 2017 ; 1 : 0005. [Google Scholar]
- Labanieh L, Majzner RG, Klysz D, et al. Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell 2022; 185 : 1745–63.e22. [CrossRef] [PubMed] [Google Scholar]
- Li H-S, Israni DV, Gagnon KA, et al. Multidimensional control of therapeutic human cell function with synthetic gene circuits. Science 2022; 378 : 1227–34. [CrossRef] [PubMed] [Google Scholar]
- Bertschi A, Wang P, Galvan S, et al. Combinatorial protein dimerization enables precise multi-input synthetic computations. Nat Chem Biol 2023; 19 : 767–77. [CrossRef] [PubMed] [Google Scholar]
- Stefanov B-A, Teixeira AP, Mansouri M, et al. Genetically Encoded Protein Thermometer Enables Precise Electrothermal Control of Transgene Expression. Adv Sci (Weinh) 2021; 8 : e2101813. [CrossRef] [PubMed] [Google Scholar]
- Haiech J, Ranjeva R, Kilhoffer MC. Biologie des systèmes et ingénierie biologique modifient la découverte et le développement des médicaments. Med Sci (Paris) 2012 ; 28 : 207–212. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Stefanov B-A. Synthetic biology circuits: temperature and myocardial infarction sensors for precision therapeutics [Doctoral Thesis]. ETH Zurich. 2022. [Google Scholar]
- Cho JH, Okuma A, Sofjan K, et al. Engineering advanced logic and distributed computing in human CAR immune cells. Nat Commun 2021; 12 : 792. [CrossRef] [PubMed] [Google Scholar]
- Schukur L, Geering B, Charpin-El Hamri G, et al. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci Transl Med 2015; 7 : 318ra201. [CrossRef] [PubMed] [Google Scholar]
- Donahue PS, Draut JW, Muldoon JJ, et al. The COMET toolkit for composing customizable genetic programs in mammalian cells. Nat Commun 2020; 11 : 779. [CrossRef] [PubMed] [Google Scholar]
- Gao XJ, Chong LS, Kim MS, et al. Programmable protein circuits in living cells. Science 2018 ; 361 : 1252–1258. [CrossRef] [PubMed] [Google Scholar]
- Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature 2000 ; 403 : 335–338. [CrossRef] [PubMed] [Google Scholar]
- Mahameed M, Xue S, Stefanov B-A, et al. Engineering a Rapid Insulin Release System Controlled By Oral Drug Administration. Adv Sci (Weinh) 2022; 9 : e2105619. [CrossRef] [PubMed] [Google Scholar]
- Nims RJ, Pferdehirt L, Ho NB, et al. A synthetic mechanogenetic gene circuit for autonomous drug delivery in engineered tissues. Sci Adv 2021; 7 : eabd9858. [CrossRef] [PubMed] [Google Scholar]
- Li H-S, Wong NM, Tague E, et al. High-performance multiplex drug-gated CAR circuits. Cancer Cell 2022; S1535–6108(22)00372–5. [PubMed] [Google Scholar]
- Page A, Delles M, Nègre D, et al. Engineering B cells with customized therapeutic responses using a synthetic circuit. Molecular Therapy - Nucleic Acids 2023; 33 : 1–14. [CrossRef] [Google Scholar]
- Hell D.. Self-Adjusting Cytokine Neutralizer Cells as a Closed-Loop Delivery System of Anti-Inflammatory Biologicals. ACS Synth Biol 2018 ; 7 : 2518–2528. [CrossRef] [PubMed] [Google Scholar]
- Ashimova A, Yegorov S, Negmetzhanov B, et al. Cell Encapsulation Within Alginate Microcapsules: Immunological Challenges and Outlook. Front Bioeng Biotechnol 2019 ; 7 : 380. [CrossRef] [PubMed] [Google Scholar]
- Bose S, Volpatti LR, Thiono D, et al. A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells. Nat Biomed Eng 2020; 4 : 814–26. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.