Open Access
Numéro
Med Sci (Paris)
Volume 40, Numéro 5, Mai 2024
Page(s) 445 - 453
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024058
Publié en ligne 31 mai 2024
  1. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 2020; 20 : 651–68. [CrossRef] [PubMed] [Google Scholar]
  2. Mellman I, Chen DS, Powles T, et al. The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity 2023; 56 : 2188–205. [CrossRef] [PubMed] [Google Scholar]
  3. CatrosV. Les CAR-T cells, des cellules tueuses spécifiques d’antigènes tumoraux - De nouvelles générations pour le traitement des tumeurs solides. Med Sci (Paris) 2019 ; 35 : 316–326. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Riffard C, Teillaud J-L. [Bispecific antibodies: An old story with a bright future… with CAR-T cells!]. Bull Cancer 2021; 108 : S168–80. [CrossRef] [PubMed] [Google Scholar]
  5. June CH, Sadelain M. Chimeric Antigen Receptor Therapy. N Engl J Med 2018 ; 379 : 64–73. [CrossRef] [PubMed] [Google Scholar]
  6. Castellarin M, Watanabe K, June CH, et al. Driving cars to the clinic for solid tumors. Gene Ther 2018 ; 25 : 165–175. [CrossRef] [PubMed] [Google Scholar]
  7. Cappell KM, Kochenderfer JN. A comparison of chimeric antigen receptors containing CD28 versus 4–1BB costimulatory domains. Nat Rev Clin Oncol 2021; 18 : 715–27. [CrossRef] [PubMed] [Google Scholar]
  8. Feucht J, Sun J, Eyquem Jet al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med 2019 ; 25 : 82–88. [CrossRef] [PubMed] [Google Scholar]
  9. Melenhorst JJ, Chen GM, Wang M, et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 2022; 602 : 503–9. [CrossRef] [PubMed] [Google Scholar]
  10. Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature 2017 ; 545 : 423–431. [CrossRef] [PubMed] [Google Scholar]
  11. Zhao Z, Condomines M, van der Stegen SJCet al. Structural Design of Engineered Costimulation Determines Tumor Rejection Kinetics and Persistence of CAR T Cells. Cancer Cell 2015 ; 28 : 415–428. [CrossRef] [PubMed] [Google Scholar]
  12. Cherkassky L, Morello A, Villena-Vargas Jet al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 2016 ; 126 : 3130–3144. [CrossRef] [PubMed] [Google Scholar]
  13. Maude SL, Laetsch TW, Buechner Jet al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med 2018 ; 378 : 439–448. [CrossRef] [PubMed] [Google Scholar]
  14. Shah BD, Ghobadi A, Oluwole OO, et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 2021; 398 : 491–502. [CrossRef] [PubMed] [Google Scholar]
  15. Locke FL, Ghobadi A, Jacobson CAet al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol 2019 ; 20 : 31–42. [CrossRef] [PubMed] [Google Scholar]
  16. Wang M, Munoz J, Goy A, et al. Three-Year Follow-Up of KTE-X19 in Patients With Relapsed/Refractory Mantle Cell Lymphoma, Including High-Risk Subgroups, in the ZUMA-2 Study. J Clin Oncol 2023; 41 : 555–67. [CrossRef] [PubMed] [Google Scholar]
  17. Fowler NH, Dickinson M, Dreyling M, et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial. Nat Med 2022; 28 : 325–32. [CrossRef] [PubMed] [Google Scholar]
  18. Munshi NC, Anderson LD, Shah N, et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med 2021; 384 : 705–16. [CrossRef] [PubMed] [Google Scholar]
  19. Martin T, Usmani SZ, Berdeja JG, et al. Ciltacabtagene Autoleucel, an Anti-B-cell Maturation Antigen Chimeric Antigen Receptor T-Cell Therapy, for Relapsed/Refractory Multiple Myeloma: CARTITUDE-1 2-Year Follow-Up. J Clin Oncol 2023; 41 : 1265–74. [CrossRef] [PubMed] [Google Scholar]
  20. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood 2017 ; 130: 1800–8, Blood 2018 ; 131: 587–588. [CrossRef] [PubMed] [Google Scholar]
  21. Neelapu SS, Locke FL, Bartlett NL, et al. Comparison of 2-year outcomes with CAR T cells (ZUMA-1) vs salvage chemotherapy in refractory large B-cell lymphoma. Blood Adv 2021; 5 : 4149–55. [CrossRef] [PubMed] [Google Scholar]
  22. Alcantara M, Tesio M, June CH, et al. CAR T-cells for T-cell malignancies: challenges in distinguishing between therapeutic, normal, and neoplastic T-cells. Leukemia 2018 ; 32 : 2307–2315. [CrossRef] [PubMed] [Google Scholar]
  23. Cummins KD, Gill S. Chimeric antigen receptor T-cell therapy for acute myeloid leukemia: how close to reality?. Haematologica 2019 ; 104 : 1302–1308. [CrossRef] [PubMed] [Google Scholar]
  24. Alcantara M, Du Rusquec P, Romano E. Current Clinical Evidence and Potential Solutions to Increase Benefit of CAR T-Cell Therapy for Patients with Solid Tumors. Oncoimmunology 2020; 9 : 1777064. [CrossRef] [PubMed] [Google Scholar]
  25. Edeline J, Houot R, Marabelle A, et al. CAR-T cells and BiTEs in solid tumors: challenges and perspectives. J Hematol Oncol 2021; 14 : 65. [CrossRef] [PubMed] [Google Scholar]
  26. Wei J, Han X, Bo J, et al. Target selection for CAR-T therapy. J Hematol Oncol 2019 ; 12 : 62. [CrossRef] [PubMed] [Google Scholar]
  27. Chandran SS, Klebanoff CA. T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance. Immunol Rev 2019 ; 290 : 127–147. [CrossRef] [Google Scholar]
  28. Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol 2023; 20 : 359–71. [CrossRef] [PubMed] [Google Scholar]
  29. Brillembourg H, Martínez-Cibrián N, Bachiller M, et al. The role of chimeric antigen receptor T cells targeting more than one antigen in the treatment of B-cell malignancies. Br J Haematol 2024; doi: 10.1111/bjh.19348. [Google Scholar]
  30. Bagley SJ, Logun M, Fraietta JA, et al. Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim results. Nat Med 2024; doi: 10.1038/s41591-024-02893-z. [PubMed] [Google Scholar]
  31. Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N Engl J Med 2019 ; 380 : 1726–1737. [CrossRef] [PubMed] [Google Scholar]
  32. Majzner RG, Ramakrishna S, Yeom KW, et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 2022; 603 : 934–41. [CrossRef] [PubMed] [Google Scholar]
  33. Del Bufalo F, De Angelis B, Caruana I, et al. GD2-CART01 for Relapsed or Refractory High-Risk Neuroblastoma. N Engl J Med 2023; 388 : 1284–95. [CrossRef] [PubMed] [Google Scholar]
  34. Beatty GL, O’Hara MH, Lacey SFet al. Activity of Mesothelin-Specific Chimeric Antigen Receptor T Cells Against Pancreatic Carcinoma Metastases in a Phase 1 Trial. Gastroenterology 2018 ; 155 : 29–32. [CrossRef] [PubMed] [Google Scholar]
  35. O’Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017; 9 : eaaa0984. [CrossRef] [PubMed] [Google Scholar]
  36. Irving M, Lanitis E, Migliorini D, et al. Choosing the Right Tool for Genetic Engineering: Clinical Lessons from Chimeric Antigen Receptor-T Cells. Hum Gene Ther 2021; 32 : 1044–58. [CrossRef] [PubMed] [Google Scholar]
  37. Prinzing B, Zebley CC, Petersen CT, et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci Transl Med 2021; 13 : eabh0272. [CrossRef] [PubMed] [Google Scholar]
  38. López-Cobo S, Fuentealba JR, Gueguen P, et al. SUV39H1 Ablation Enhances Long-term CAR T Function in Solid Tumors. Cancer Discov 2024; 14 : 120–41. [CrossRef] [PubMed] [Google Scholar]
  39. Johnson A, Townsend M, O’Neill K. Tumor Microenvironment Immunosuppression: A Roadblock to CAR T-Cell Advancement in Solid Tumors. Cells 2022; 11 : 3626. [Google Scholar]
  40. Bagley SJ, Binder ZA, Lamrani L, et al. Repeated peripheral infusions of anti-EGFRvIII CAR T cells in combination with pembrolizumab show no efficacy in glioblastoma: a phase 1 trial. Nat Cancer 2024; 5 : 517–31. [CrossRef] [PubMed] [Google Scholar]
  41. Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer 2021; 21 : 145–61. [CrossRef] [PubMed] [Google Scholar]
  42. Foeng J, Comerford I, McColl SR. Harnessing the chemokine system to home CAR-T cells into solid tumors. Cell Rep Med 2022; 3 : 100543. [CrossRef] [PubMed] [Google Scholar]
  43. McGowan E, Lin Q, Ma G, et al. PD-1 disrupted CAR-T cells in the treatment of solid tumors: Promises and challenges. Biomed Pharmacother 2020; 121 : 109625. [CrossRef] [PubMed] [Google Scholar]
  44. Narayan V, Barber-Rotenberg JS, Jung I-Y, et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat Med 2022; 28 : 724–34. [CrossRef] [PubMed] [Google Scholar]
  45. Haas AR, Golden RJ, Litzky LA, et al. Two cases of severe pulmonary toxicity from highly active mesothelin-directed CAR T cells. Mol Ther 2023; 31 : 2309–25. [CrossRef] [PubMed] [Google Scholar]
  46. Kandra P, Nandigama R, Eul B, et al. Utility and Drawbacks of Chimeric Antigen Receptor T Cell (CAR-T) Therapy in Lung Cancer. Front Immunol 2022; 13 : 903562. [CrossRef] [PubMed] [Google Scholar]
  47. Lee DW, Santomasso BD, Locke FLet al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol Blood Marrow Transplant 2019 ; 25 : 625–638. [CrossRef] [PubMed] [Google Scholar]
  48. June CH, O’Connor RS, Kawalekar OUet al. CAR T cell immunotherapy for human cancer. Science 2018 ; 359 : 1361–1365. [Google Scholar]
  49. Morris EC, Neelapu SS, Giavridis T, et al. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol 2022; 22 : 85–96. [CrossRef] [PubMed] [Google Scholar]
  50. Hunter BD, Jacobson CA. CAR T-Cell Associated Neurotoxicity: Mechanisms, Clinicopathologic Correlates, and Future Directions. J Natl Cancer Inst 2019 ; 111 : 646–654. [CrossRef] [PubMed] [Google Scholar]
  51. Park JH, Palomba ML, Rivière I, et al. A Phase I Study of CD19-Targeted 19(T2)28z1xx CAR T Cells in Adult Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Blood 2022; 140 : 403–4. [CrossRef] [Google Scholar]
  52. Straathof KC, Spencer DM, Sutton REet al. Suicide genes as safety switches in T lymphocytes. Cytotherapy 2003 ; 5 : 227–230. [CrossRef] [PubMed] [Google Scholar]
  53. Rubio MT, Varlet P, Allain V, et al. [Immunomonitoring of patients treated with CAR-T cells for hematological malignancy: Guidelines from the CARTi group and the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)]. Bull Cancer 2021; 108 : S53–S64. [CrossRef] [PubMed] [Google Scholar]
  54. Fraietta JA, Lacey SF, Orlando EJet al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 2018 ; 24 : 563–571. [CrossRef] [PubMed] [Google Scholar]
  55. Desvaux E, Moingeon P, Bril A, et al. Lupus érythémateux disséminé - Une nouvelle indication thérapeutique pour les cellules CAR-T ? Med Sci (Paris) 2022; 38 : 337–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  56. Mougiakakos D, Krönke G, Völkl S, et al. CD19-Targeted CAR T Cells in Refractory Systemic Lupus Erythematosus. N Engl J Med 2021; 385 : 567–9. [CrossRef] [PubMed] [Google Scholar]
  57. Müller F, Taubmann J, Bucci L, et al. CD19 CAR T-Cell Therapy in Autoimmune Disease - A Case Series with Follow-up. N Engl J Med 2024; 390 : 687–700. [CrossRef] [PubMed] [Google Scholar]
  58. Bayer Wildberger A, Vilquin J-T. Les cellules CAR-T - Des nouvelles armes dans la lutte contre la fibrose musculaire ? Med Sci (Paris) 2022; 38 Hors série n° 1 : 40–1. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.