Open Access
Issue
Med Sci (Paris)
Volume 40, Number 5, Mai 2024
Page(s) 421 - 427
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024046
Published online 31 May 2024
  1. Boccaletto P, Stefaniak F, Ray A, et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res 2022; 50 : D231–5. [Google Scholar]
  2. Linder B, JaffreySR. Discovering and Mapping the Modified Nucleotides That Comprise the Epitranscriptome of mRNA. Cold Spring Harb. Perspect. Biol 2019 ; 11 : a032201. [CrossRef] [Google Scholar]
  3. Netzband R, Pager CT. Epitranscriptomic marks: Emerging modulators of RNA virus gene expression. WIREs RNA 2020; 11 : e1576. [Google Scholar]
  4. Lichinchi G, Gao S, Saletore Y, et al. Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol 2016 ; 1 : 16011. [CrossRef] [PubMed] [Google Scholar]
  5. Courtney DG, Tsai K, Bogerd HP, et al. Epitranscriptomic Addition of m5C to HIV-1 Transcripts Regulates Viral Gene Expression. Cell Host Microbe 2019 ; 26 : 217–27.e6. [CrossRef] [PubMed] [Google Scholar]
  6. Doria M, Neri F, Gallo A, et al. Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection. Nucleic Acids Res 2009 ; 37 : 5848–5858. [Google Scholar]
  7. Phuphuakrat A, Kraiwong R, Boonarkart C, et al. Double-stranded RNA adenosine deaminases enhance expression of human immunodeficiency virus type 1 proteins. J Virol 2008 ; 82 : 10864–10872. [CrossRef] [Google Scholar]
  8. Ringeard M, Marchand V, Decroly E, et al. FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature 2019 ; 565 : 500–504. [CrossRef] [PubMed] [Google Scholar]
  9. Smietanski M, Werner M, Purta E, et al. Structural analysis of human 2′-O-ribose methyltransferases involved in mRNA cap structure formation. Nat Commun 2014 ; 5 : 3004. [CrossRef] [PubMed] [Google Scholar]
  10. Zhou M, Deng L, Kashanchi F, et al. The Tat/TAR-dependent phosphorylation of RNA polymerase II C-terminal domain stimulates cotranscriptional capping of HIV-1 mRNA. Proc Natl Acad Sci USA 2003 ; 100 : 12666–12671. [CrossRef] [PubMed] [Google Scholar]
  11. Yedavalli VSRK, Jeang K-T. Trimethylguanosine capping selectively promotes expression of Rev-dependent HIV-1 RNAs. Proc Natl Acad Sci USA 2010 ; 107 : 14787–14792. [CrossRef] [PubMed] [Google Scholar]
  12. Bélanger F, Stepinski J, Darzynkiewicz E, et al. Characterization of hMTr1, a Human Cap1 2′-O-Ribose Methyltransferase. J Biol Chem 2010 ; 285 : 33037–33044. [CrossRef] [PubMed] [Google Scholar]
  13. Hsu PC, Hodel MR, Thomas JW, et al. Structural requirements for the specific recognition of an m7G mRNA cap. Biochemistry 2000 ; 39 : 13730–13736. [CrossRef] [PubMed] [Google Scholar]
  14. Devarkar SC, Wang C, Miller MT, et al. Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc Natl Acad Sci USA 2016 ; 113 : 596–601. [CrossRef] [PubMed] [Google Scholar]
  15. Züst R, Dong H, Li X-F, et al. Rational design of a live attenuated dengue vaccine: 2′-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques. PLoS Pathog 2013 ; 9 : e1003521. [CrossRef] [PubMed] [Google Scholar]
  16. Hornung V, Ellegast J, Kim S, et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 2006 ; 314 : 994–997. [CrossRef] [PubMed] [Google Scholar]
  17. Daffis S, Szretter KJ, Schriewer J, et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 2010 ; 468 : 452–456. [CrossRef] [PubMed] [Google Scholar]
  18. Abbas YM, Laudenbach BT, Martínez-Montero S, et al. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations. Proc Natl Acad Sci USA 2017 ; 114 : E2106–E2115. [CrossRef] [PubMed] [Google Scholar]
  19. Espert L, Degols G, Lin Y-L, et al. Interferon-induced exonuclease ISG20 exhibits an antiviral activity against human immunodeficiency virus type 1. J Gen Virol 2005 ; 86 : 2221–2229. [CrossRef] [PubMed] [Google Scholar]
  20. El Kazzi P, Rabah N, Chamontin C, et al. Internal RNA 2′O-methylation in the HIV-1 genome counteracts ISG20 nuclease-mediated antiviral effect. Nucleic Acids Res 2023; 51 : 2501–15. [Google Scholar]
  21. Decombe A, Peersen O, Sutto-Ortiz P, et al. Internal RNA 2′-O-methylation on the HIV-1 genome impairs reverse transcription. Nucleic Acids Res 2023; gkad1134. [Google Scholar]
  22. Maden BEH. Mapping 2′-O-Methyl Groups in Ribosomal RNA. Methods 2001 ; 25 : 374–382. [CrossRef] [PubMed] [Google Scholar]
  23. Decombe A, El Kazzi P, Decroly E. Interplay of RNA 2′-O-methylations with viral replication. Curr Opin Virol 2023; 59 : 101302. [CrossRef] [PubMed] [Google Scholar]
  24. Salvetti A. Épitranscriptome. Med Sci (Paris) 2024; 40 : 287. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  25. Rousseaux N, Andrieux L. Un facteur antiviral qui discrimine la traduction du soi et du non-soi. Med Sci (Paris) 2021; 37 : 1070–2. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  26. Chardès B, Lucifora J, Salvetti A. La protéine ISG20, un nouveau facteur de restriction contre le virus de l’hépatite B ? Med Sci (Paris) 2018; 34 : 388–91. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.