Open Access
Med Sci (Paris)
Volume 40, Number 5, Mai 2024
Page(s) 437 - 444
Section M/S Revues
Published online 31 May 2024
  1. Guedan S, Ruella M, June CH. Emerging Cellular Therapies for Cancer. Annu Rev Immunol 2019 ; 37 : 145–171. [CrossRef] [PubMed] [Google Scholar]
  2. Asmamaw Dejenie T, Tiruneh G/Medhin M, Dessie Terefe G, et al. Current updates on generations, approvals, and clinical trials of CAR T-cell therapy. Human Vaccines & Immunotherapeutics 2022; 0 : 2114254. [CrossRef] [PubMed] [Google Scholar]
  3. Detela G, Lodge A. EU Regulatory Pathways for ATMPs: Standard, Accelerated and Adaptive Pathways to Marketing Authorisation. Molecular Therapy - Methods & Clinical Development 2019 ; 13 : 205–232. [CrossRef] [Google Scholar]
  4. Catros V.. Les CAR-T cells, des cellules tueuses spécifiques d’antigènes tumoraux - De nouvelles générations pour le traitement des tumeurs solides. Med Sci (Paris) 2019 ; 35 : 316–326. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Xie M, Fussenegger M. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat Rev Mol Cell Biol 2018 ; 19 : 507–525. [CrossRef] [PubMed] [Google Scholar]
  6. Morel M.. Des gènes synthétiques à l’assaut du cancer - Vers des traitements plus efficaces grâce à des programmes génétiques autonomes. Med Sci (Paris) 2017 ; 33 : 591–593. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Chakraborty D, Rengaswamy R, Raman K. Designing Biological Circuits: From Principles to Applications. ACS Synth. Biol. 2022; 11 : 1377–88. [CrossRef] [Google Scholar]
  8. Yu Y, Yu G, Ye H. Constructing Smartphone-Controlled Optogenetic Switches in Mammalian Cells. Methods Mol Biol 2021; 2312 : 125–39. [CrossRef] [PubMed] [Google Scholar]
  9. Huang J, Xue S, Buchmann P, et al. An electrogenetic interface to program mammalian gene expression by direct current. Nat Metabol 2023; 5 : 1395–407. [CrossRef] [Google Scholar]
  10. Maity D, Guha Ray P, Buchmann P, et al. Blood-Glucose-Powered Metabolic Fuel Cell for Self-Sufficient Bioelectronics. Adv Mater 2023; 35 : e2300890. [CrossRef] [PubMed] [Google Scholar]
  11. Bashor CJ, Hilton IB, Bandukwala H, et al. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov 2022; 21 : 655–75. [CrossRef] [PubMed] [Google Scholar]
  12. Liu Y, Bai P, Woischnig A-Ket al. Immunomimetic Designer Cells Protect Mice from MRSA Infection. Cell 2018 ; 174 : 259–70.e11. [CrossRef] [PubMed] [Google Scholar]
  13. Xie M, Ye H, Wang Het al. β-cell-mimetic designer cells provide closed-loop glycemic control. Science 2016 ; 354 : 1296–1301. [CrossRef] [PubMed] [Google Scholar]
  14. Giraudot C. Un exemple de circuit synthétique de gènes reposant sur le principe de la boucle fermée pour réguler une maladie métabolique [Thèse de doctorat vétérinaire]. Lyon : Université Claude Bernard Lyon I. 2023. [Google Scholar]
  15. Wiener N. Cybernetics or Control and Communication in the Animal and the Machine. The MIT Press, 1948 : 194 p. [Google Scholar]
  16. Leelarathna L, Choudhary P, Wilmot EG, et al. Hybrid closed-loop therapy: Where are we in 2021? Diabetes Obes Metab 2021; 23 : 655–60. [CrossRef] [PubMed] [Google Scholar]
  17. Bekiari E, Kitsios K, Thabit Het al. Artificial pancreas treatment for outpatients with type 1 diabetes: systematic review and meta-analysis. BMJ 2018 ; 361 : k1310. [CrossRef] [PubMed] [Google Scholar]
  18. Kemmer C, Gitzinger M, Daoud-El Baba Met al. Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat Biotechnol 2010 ; 28 : 355–360. [CrossRef] [PubMed] [Google Scholar]
  19. Rössger K, Charpin-El-Hamri G, Fussenegger M. A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nat Commun 2013 ; 4 : 2825. [CrossRef] [PubMed] [Google Scholar]
  20. Saxena P, Charpin-El Hamri G, Folcher Met al. Synthetic gene network restoring endogenous pituitary-thyroid feedback control in experimental Graves’ disease. Proc Natl Acad Sci U S A 2016 ; 113 : 1244–1249. [CrossRef] [PubMed] [Google Scholar]
  21. Stefanov B-A, Fussenegger M. Biomarker-driven feedback control of synthetic biology systems for next-generation personalized medicine. Front Bioeng Biotechnol 2022; 10 : 986210. [CrossRef] [PubMed] [Google Scholar]
  22. Jan M, Scarfò I, Larson RC, et al. Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci Transl Med 2021; 13 : eabb6295. [CrossRef] [PubMed] [Google Scholar]
  23. Xue S, Yin J, Shao J, et al. A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes. Mol Ther 2017 ; 25 : 443–455. [CrossRef] [PubMed] [Google Scholar]
  24. Ye H, Xie M, Xue S, et al. Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat Biomed Eng 2017 ; 1 : 0005. [Google Scholar]
  25. Labanieh L, Majzner RG, Klysz D, et al. Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell 2022; 185 : 1745–63.e22. [CrossRef] [PubMed] [Google Scholar]
  26. Li H-S, Israni DV, Gagnon KA, et al. Multidimensional control of therapeutic human cell function with synthetic gene circuits. Science 2022; 378 : 1227–34. [CrossRef] [PubMed] [Google Scholar]
  27. Bertschi A, Wang P, Galvan S, et al. Combinatorial protein dimerization enables precise multi-input synthetic computations. Nat Chem Biol 2023; 19 : 767–77. [CrossRef] [PubMed] [Google Scholar]
  28. Stefanov B-A, Teixeira AP, Mansouri M, et al. Genetically Encoded Protein Thermometer Enables Precise Electrothermal Control of Transgene Expression. Adv Sci (Weinh) 2021; 8 : e2101813. [CrossRef] [PubMed] [Google Scholar]
  29. Haiech J, Ranjeva R, Kilhoffer MC. Biologie des systèmes et ingénierie biologique modifient la découverte et le développement des médicaments. Med Sci (Paris) 2012 ; 28 : 207–212. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Stefanov B-A. Synthetic biology circuits: temperature and myocardial infarction sensors for precision therapeutics [Doctoral Thesis]. ETH Zurich. 2022. [Google Scholar]
  31. Cho JH, Okuma A, Sofjan K, et al. Engineering advanced logic and distributed computing in human CAR immune cells. Nat Commun 2021; 12 : 792. [CrossRef] [PubMed] [Google Scholar]
  32. Schukur L, Geering B, Charpin-El Hamri G, et al. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci Transl Med 2015; 7 : 318ra201. [CrossRef] [PubMed] [Google Scholar]
  33. Donahue PS, Draut JW, Muldoon JJ, et al. The COMET toolkit for composing customizable genetic programs in mammalian cells. Nat Commun 2020; 11 : 779. [CrossRef] [PubMed] [Google Scholar]
  34. Gao XJ, Chong LS, Kim MS, et al. Programmable protein circuits in living cells. Science 2018 ; 361 : 1252–1258. [CrossRef] [PubMed] [Google Scholar]
  35. Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature 2000 ; 403 : 335–338. [CrossRef] [PubMed] [Google Scholar]
  36. Mahameed M, Xue S, Stefanov B-A, et al. Engineering a Rapid Insulin Release System Controlled By Oral Drug Administration. Adv Sci (Weinh) 2022; 9 : e2105619. [CrossRef] [PubMed] [Google Scholar]
  37. Nims RJ, Pferdehirt L, Ho NB, et al. A synthetic mechanogenetic gene circuit for autonomous drug delivery in engineered tissues. Sci Adv 2021; 7 : eabd9858. [CrossRef] [PubMed] [Google Scholar]
  38. Li H-S, Wong NM, Tague E, et al. High-performance multiplex drug-gated CAR circuits. Cancer Cell 2022; S1535–6108(22)00372–5. [PubMed] [Google Scholar]
  39. Page A, Delles M, Nègre D, et al. Engineering B cells with customized therapeutic responses using a synthetic circuit. Molecular Therapy - Nucleic Acids 2023; 33 : 1–14. [CrossRef] [Google Scholar]
  40. Hell D.. Self-Adjusting Cytokine Neutralizer Cells as a Closed-Loop Delivery System of Anti-Inflammatory Biologicals. ACS Synth Biol 2018 ; 7 : 2518–2528. [CrossRef] [PubMed] [Google Scholar]
  41. Ashimova A, Yegorov S, Negmetzhanov B, et al. Cell Encapsulation Within Alginate Microcapsules: Immunological Challenges and Outlook. Front Bioeng Biotechnol 2019 ; 7 : 380. [CrossRef] [PubMed] [Google Scholar]
  42. Bose S, Volpatti LR, Thiono D, et al. A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells. Nat Biomed Eng 2020; 4 : 814–26. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.