Open Access
Med Sci (Paris)
Volume 40, Number 5, Mai 2024
Page(s) 445 - 453
Section M/S Revues
Published online 31 May 2024
  1. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 2020; 20 : 651–68. [CrossRef] [PubMed] [Google Scholar]
  2. Mellman I, Chen DS, Powles T, et al. The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity 2023; 56 : 2188–205. [CrossRef] [PubMed] [Google Scholar]
  3. CatrosV. Les CAR-T cells, des cellules tueuses spécifiques d’antigènes tumoraux - De nouvelles générations pour le traitement des tumeurs solides. Med Sci (Paris) 2019 ; 35 : 316–326. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Riffard C, Teillaud J-L. [Bispecific antibodies: An old story with a bright future… with CAR-T cells!]. Bull Cancer 2021; 108 : S168–80. [CrossRef] [PubMed] [Google Scholar]
  5. June CH, Sadelain M. Chimeric Antigen Receptor Therapy. N Engl J Med 2018 ; 379 : 64–73. [CrossRef] [PubMed] [Google Scholar]
  6. Castellarin M, Watanabe K, June CH, et al. Driving cars to the clinic for solid tumors. Gene Ther 2018 ; 25 : 165–175. [CrossRef] [PubMed] [Google Scholar]
  7. Cappell KM, Kochenderfer JN. A comparison of chimeric antigen receptors containing CD28 versus 4–1BB costimulatory domains. Nat Rev Clin Oncol 2021; 18 : 715–27. [CrossRef] [PubMed] [Google Scholar]
  8. Feucht J, Sun J, Eyquem Jet al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med 2019 ; 25 : 82–88. [CrossRef] [PubMed] [Google Scholar]
  9. Melenhorst JJ, Chen GM, Wang M, et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 2022; 602 : 503–9. [CrossRef] [PubMed] [Google Scholar]
  10. Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature 2017 ; 545 : 423–431. [CrossRef] [PubMed] [Google Scholar]
  11. Zhao Z, Condomines M, van der Stegen SJCet al. Structural Design of Engineered Costimulation Determines Tumor Rejection Kinetics and Persistence of CAR T Cells. Cancer Cell 2015 ; 28 : 415–428. [CrossRef] [PubMed] [Google Scholar]
  12. Cherkassky L, Morello A, Villena-Vargas Jet al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 2016 ; 126 : 3130–3144. [CrossRef] [PubMed] [Google Scholar]
  13. Maude SL, Laetsch TW, Buechner Jet al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med 2018 ; 378 : 439–448. [CrossRef] [PubMed] [Google Scholar]
  14. Shah BD, Ghobadi A, Oluwole OO, et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 2021; 398 : 491–502. [CrossRef] [PubMed] [Google Scholar]
  15. Locke FL, Ghobadi A, Jacobson CAet al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol 2019 ; 20 : 31–42. [CrossRef] [PubMed] [Google Scholar]
  16. Wang M, Munoz J, Goy A, et al. Three-Year Follow-Up of KTE-X19 in Patients With Relapsed/Refractory Mantle Cell Lymphoma, Including High-Risk Subgroups, in the ZUMA-2 Study. J Clin Oncol 2023; 41 : 555–67. [CrossRef] [PubMed] [Google Scholar]
  17. Fowler NH, Dickinson M, Dreyling M, et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial. Nat Med 2022; 28 : 325–32. [CrossRef] [PubMed] [Google Scholar]
  18. Munshi NC, Anderson LD, Shah N, et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med 2021; 384 : 705–16. [CrossRef] [PubMed] [Google Scholar]
  19. Martin T, Usmani SZ, Berdeja JG, et al. Ciltacabtagene Autoleucel, an Anti-B-cell Maturation Antigen Chimeric Antigen Receptor T-Cell Therapy, for Relapsed/Refractory Multiple Myeloma: CARTITUDE-1 2-Year Follow-Up. J Clin Oncol 2023; 41 : 1265–74. [CrossRef] [PubMed] [Google Scholar]
  20. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood 2017 ; 130: 1800–8, Blood 2018 ; 131: 587–588. [CrossRef] [PubMed] [Google Scholar]
  21. Neelapu SS, Locke FL, Bartlett NL, et al. Comparison of 2-year outcomes with CAR T cells (ZUMA-1) vs salvage chemotherapy in refractory large B-cell lymphoma. Blood Adv 2021; 5 : 4149–55. [CrossRef] [PubMed] [Google Scholar]
  22. Alcantara M, Tesio M, June CH, et al. CAR T-cells for T-cell malignancies: challenges in distinguishing between therapeutic, normal, and neoplastic T-cells. Leukemia 2018 ; 32 : 2307–2315. [CrossRef] [PubMed] [Google Scholar]
  23. Cummins KD, Gill S. Chimeric antigen receptor T-cell therapy for acute myeloid leukemia: how close to reality?. Haematologica 2019 ; 104 : 1302–1308. [CrossRef] [PubMed] [Google Scholar]
  24. Alcantara M, Du Rusquec P, Romano E. Current Clinical Evidence and Potential Solutions to Increase Benefit of CAR T-Cell Therapy for Patients with Solid Tumors. Oncoimmunology 2020; 9 : 1777064. [CrossRef] [PubMed] [Google Scholar]
  25. Edeline J, Houot R, Marabelle A, et al. CAR-T cells and BiTEs in solid tumors: challenges and perspectives. J Hematol Oncol 2021; 14 : 65. [CrossRef] [PubMed] [Google Scholar]
  26. Wei J, Han X, Bo J, et al. Target selection for CAR-T therapy. J Hematol Oncol 2019 ; 12 : 62. [CrossRef] [PubMed] [Google Scholar]
  27. Chandran SS, Klebanoff CA. T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance. Immunol Rev 2019 ; 290 : 127–147. [CrossRef] [Google Scholar]
  28. Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol 2023; 20 : 359–71. [CrossRef] [PubMed] [Google Scholar]
  29. Brillembourg H, Martínez-Cibrián N, Bachiller M, et al. The role of chimeric antigen receptor T cells targeting more than one antigen in the treatment of B-cell malignancies. Br J Haematol 2024; doi: 10.1111/bjh.19348. [Google Scholar]
  30. Bagley SJ, Logun M, Fraietta JA, et al. Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim results. Nat Med 2024; doi: 10.1038/s41591-024-02893-z. [PubMed] [Google Scholar]
  31. Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N Engl J Med 2019 ; 380 : 1726–1737. [CrossRef] [PubMed] [Google Scholar]
  32. Majzner RG, Ramakrishna S, Yeom KW, et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 2022; 603 : 934–41. [CrossRef] [PubMed] [Google Scholar]
  33. Del Bufalo F, De Angelis B, Caruana I, et al. GD2-CART01 for Relapsed or Refractory High-Risk Neuroblastoma. N Engl J Med 2023; 388 : 1284–95. [CrossRef] [PubMed] [Google Scholar]
  34. Beatty GL, O’Hara MH, Lacey SFet al. Activity of Mesothelin-Specific Chimeric Antigen Receptor T Cells Against Pancreatic Carcinoma Metastases in a Phase 1 Trial. Gastroenterology 2018 ; 155 : 29–32. [CrossRef] [PubMed] [Google Scholar]
  35. O’Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017; 9 : eaaa0984. [CrossRef] [PubMed] [Google Scholar]
  36. Irving M, Lanitis E, Migliorini D, et al. Choosing the Right Tool for Genetic Engineering: Clinical Lessons from Chimeric Antigen Receptor-T Cells. Hum Gene Ther 2021; 32 : 1044–58. [CrossRef] [PubMed] [Google Scholar]
  37. Prinzing B, Zebley CC, Petersen CT, et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci Transl Med 2021; 13 : eabh0272. [CrossRef] [PubMed] [Google Scholar]
  38. López-Cobo S, Fuentealba JR, Gueguen P, et al. SUV39H1 Ablation Enhances Long-term CAR T Function in Solid Tumors. Cancer Discov 2024; 14 : 120–41. [CrossRef] [PubMed] [Google Scholar]
  39. Johnson A, Townsend M, O’Neill K. Tumor Microenvironment Immunosuppression: A Roadblock to CAR T-Cell Advancement in Solid Tumors. Cells 2022; 11 : 3626. [Google Scholar]
  40. Bagley SJ, Binder ZA, Lamrani L, et al. Repeated peripheral infusions of anti-EGFRvIII CAR T cells in combination with pembrolizumab show no efficacy in glioblastoma: a phase 1 trial. Nat Cancer 2024; 5 : 517–31. [CrossRef] [PubMed] [Google Scholar]
  41. Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer 2021; 21 : 145–61. [CrossRef] [PubMed] [Google Scholar]
  42. Foeng J, Comerford I, McColl SR. Harnessing the chemokine system to home CAR-T cells into solid tumors. Cell Rep Med 2022; 3 : 100543. [CrossRef] [PubMed] [Google Scholar]
  43. McGowan E, Lin Q, Ma G, et al. PD-1 disrupted CAR-T cells in the treatment of solid tumors: Promises and challenges. Biomed Pharmacother 2020; 121 : 109625. [CrossRef] [PubMed] [Google Scholar]
  44. Narayan V, Barber-Rotenberg JS, Jung I-Y, et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat Med 2022; 28 : 724–34. [CrossRef] [PubMed] [Google Scholar]
  45. Haas AR, Golden RJ, Litzky LA, et al. Two cases of severe pulmonary toxicity from highly active mesothelin-directed CAR T cells. Mol Ther 2023; 31 : 2309–25. [CrossRef] [PubMed] [Google Scholar]
  46. Kandra P, Nandigama R, Eul B, et al. Utility and Drawbacks of Chimeric Antigen Receptor T Cell (CAR-T) Therapy in Lung Cancer. Front Immunol 2022; 13 : 903562. [CrossRef] [PubMed] [Google Scholar]
  47. Lee DW, Santomasso BD, Locke FLet al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol Blood Marrow Transplant 2019 ; 25 : 625–638. [CrossRef] [PubMed] [Google Scholar]
  48. June CH, O’Connor RS, Kawalekar OUet al. CAR T cell immunotherapy for human cancer. Science 2018 ; 359 : 1361–1365. [Google Scholar]
  49. Morris EC, Neelapu SS, Giavridis T, et al. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol 2022; 22 : 85–96. [CrossRef] [PubMed] [Google Scholar]
  50. Hunter BD, Jacobson CA. CAR T-Cell Associated Neurotoxicity: Mechanisms, Clinicopathologic Correlates, and Future Directions. J Natl Cancer Inst 2019 ; 111 : 646–654. [CrossRef] [PubMed] [Google Scholar]
  51. Park JH, Palomba ML, Rivière I, et al. A Phase I Study of CD19-Targeted 19(T2)28z1xx CAR T Cells in Adult Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Blood 2022; 140 : 403–4. [CrossRef] [Google Scholar]
  52. Straathof KC, Spencer DM, Sutton REet al. Suicide genes as safety switches in T lymphocytes. Cytotherapy 2003 ; 5 : 227–230. [CrossRef] [PubMed] [Google Scholar]
  53. Rubio MT, Varlet P, Allain V, et al. [Immunomonitoring of patients treated with CAR-T cells for hematological malignancy: Guidelines from the CARTi group and the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)]. Bull Cancer 2021; 108 : S53–S64. [CrossRef] [PubMed] [Google Scholar]
  54. Fraietta JA, Lacey SF, Orlando EJet al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 2018 ; 24 : 563–571. [CrossRef] [PubMed] [Google Scholar]
  55. Desvaux E, Moingeon P, Bril A, et al. Lupus érythémateux disséminé - Une nouvelle indication thérapeutique pour les cellules CAR-T ? Med Sci (Paris) 2022; 38 : 337–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  56. Mougiakakos D, Krönke G, Völkl S, et al. CD19-Targeted CAR T Cells in Refractory Systemic Lupus Erythematosus. N Engl J Med 2021; 385 : 567–9. [CrossRef] [PubMed] [Google Scholar]
  57. Müller F, Taubmann J, Bucci L, et al. CD19 CAR T-Cell Therapy in Autoimmune Disease - A Case Series with Follow-up. N Engl J Med 2024; 390 : 687–700. [CrossRef] [PubMed] [Google Scholar]
  58. Bayer Wildberger A, Vilquin J-T. Les cellules CAR-T - Des nouvelles armes dans la lutte contre la fibrose musculaire ? Med Sci (Paris) 2022; 38 Hors série n° 1 : 40–1. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.