Open Access
Med Sci (Paris)
Volume 35, Number 4, Avril 2019
Page(s) 316 - 326
Section M/S Revues
Published online 30 April 2019
  1. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018 ; 359 : 1350–1355. [Google Scholar]
  2. Catros V, Dessarthe B, Thedrez A, Toutirais O. Les récepteurs de nectines/nectines-like DNAM-1 et CRTAM. Immuno-surveillance ou échappement tumoral ?. Med Sci (Paris) 2014 ; 30 : 537–543. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Granier C, Gey A, Dariane C, et al. Tim-3. Biomarqueur et cible thérapeutique en cancérologie. Med Sci (Paris) 2018 ; 34 : 231–237. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT : Co-inhibitory receptors with specialized functions in immune regulation. Immunity 2016 ; 44 : 989–1004. [CrossRef] [PubMed] [Google Scholar]
  5. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012 ; 12 : 252–264. [Google Scholar]
  6. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017 ; 541 : 321–330. [CrossRef] [PubMed] [Google Scholar]
  7. Catros-Quemener V, Bouet F, Genetet N. Immunité anti-tumorale et thérapies cellulaires du cancer. Med Sci (Paris) 2003 ; 19 : 43–53. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 2011 ; 17 : 4550–4557. [CrossRef] [PubMed] [Google Scholar]
  9. Catros V, Toutirais O, Bouet F, et al. Lymphocytes Tγδ en cancérologie : des lymphocytes tueurs non conventionnels. Med Sci (Paris) 2010 ; 26 : 185–191. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Ruella M, Kalos M. Adoptive immunotherapy for cancer. Immunol Rev 2014 ; 257 : 14–38. [CrossRef] [PubMed] [Google Scholar]
  11. Castellarin M, Watanabe K, June CH, et al. Driving cars to the clinic for solid tumors. Gene Ther 2018 ; 25 : 165–175. [CrossRef] [PubMed] [Google Scholar]
  12. Sadelain M, Riviere I, Riddell S. Therapeutic T cell engineering. Nature 2017 ; 545 : 423–431. [CrossRef] [PubMed] [Google Scholar]
  13. Kohl U, Arsenieva S, Holzinger A, Abken H. CAR T cells in trials : Recent achievements and challenges that remain in the production of modified T cells for clinical applications. Hum Gene Ther 2018 ; 29 : 559–568. [Google Scholar]
  14. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989 ; 86 : 10024–10028. [CrossRef] [Google Scholar]
  15. Hwu P, Shafer GE, Treisman J, et al. Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor gamma chain. J Exp Med 1993 ; 178 : 361–366. [CrossRef] [PubMed] [Google Scholar]
  16. Cooper LJ, Topp MS, Serrano LM, et al. T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect. Blood 2003 ; 101 : 1637–1644. [Google Scholar]
  17. Pule MA, Savoldo B, Myers GD, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors : persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008 ; 14 : 1264–1270. [CrossRef] [PubMed] [Google Scholar]
  18. Kochenderfer JN, Wilson WH, Janik JE, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010 ; 116 : 4099–4102. [Google Scholar]
  19. Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011 ; 365 : 725–733. [Google Scholar]
  20. Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5 : 177ra38. [CrossRef] [PubMed] [Google Scholar]
  21. Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014; 6 : 224ra25. [CrossRef] [PubMed] [Google Scholar]
  22. Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 2015; 7 : 303ra139. [CrossRef] [PubMed] [Google Scholar]
  23. Jordan B.. Immunothérapie « CAR-T » : une autorisation qui fait date. Med Sci (Paris) 2017 ; 33 : 1003–1006. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Perales MA, Kebriaei P, Kean LS, Sadelain M. Biol Blood Marrow Transplant 2018 ; 24 : 27–31. [CrossRef] [PubMed] [Google Scholar]
  25. Johnson LA, June CH. Driving gene-engineered T cell immunotherapy of cancer. Cell Res 2017 ; 27 : 38–58. [CrossRef] [PubMed] [Google Scholar]
  26. Liu Y, Zhao C, Gao L, et al. Considerations for clinical review of cellular therapy products : perspectives of the china food and drug administration center for drug evaluation. Hum Gene Ther 2018 ; 29 : 121–127. [Google Scholar]
  27. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell 2017 ; 168 : 724–740. [CrossRef] [PubMed] [Google Scholar]
  28. O’Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017; 9. [Google Scholar]
  29. Posey AD, Jr, Schwab RD, Boesteanu AC, et al. Engineered CAR T cells targeting the cancer-associated tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 2016 ; 44 : 1444–1454. [CrossRef] [PubMed] [Google Scholar]
  30. Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med 2017 ; 68 : 139–152. [CrossRef] [PubMed] [Google Scholar]
  31. Hudecek M, Sommermeyer D, Kosasih PL, et al. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res 2015 ; 3 : 125–135. [PubMed] [Google Scholar]
  32. Kawalekar OU, RS OC, Fraietta JA, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T Cells. Immunity 2016 ; 44 : 712. [Google Scholar]
  33. Guedan S, Posey AD, Jr., Shaw C, et al. Enhancing CAR T cell persistence through ICOS and 4–1BB costimulation. JCI Insight 2018; 3. [Google Scholar]
  34. Chmielewski M, Abken H. CAR T cells releasing IL-18 convert to T-Bet(high) FoxO1(low) effectors that exhibit augmented activity against advanced solid tumors. Cell Rep 2017 ; 21 : 3205–3219. [CrossRef] [PubMed] [Google Scholar]
  35. Hartmann J, Schussler-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 2017 ; 9 : 1183–1197. [CrossRef] [PubMed] [Google Scholar]
  36. Migliorini D, Dietrich PY, Stupp R, et al. CAR T-cell therapies in glioblastoma : a first look. Clin Cancer Res 2018 ; 24 : 535–540. [CrossRef] [PubMed] [Google Scholar]
  37. Fraietta JA, Nobles CL, Sammons MA, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 2018 ; 558 : 307–312. [CrossRef] [PubMed] [Google Scholar]
  38. Ruella M, Kenderian SS. Next-generation chimeric antigen receptor T-cell therapy : going off the shelf. BioDrugs 2017 ; 31 : 473–481. [CrossRef] [PubMed] [Google Scholar]
  39. Thedrez A, Lavoue V, Dessarthe B, et al. A quantitative deficiency in peripheral blood Vgamma9Vdelta2 cells is a negative prognostic biomarker in ovarian cancer patients. PLoS One 2013 ; 8 : e63322. [CrossRef] [PubMed] [Google Scholar]
  40. Marcu-Malina V, Heijhuurs S, van Buuren M, et al. Redirecting alphabeta T cells against cancer cells by transfer of a broadly tumor-reactive gammadeltaT-cell receptor. Blood 2011 ; 118 : 50–59. [Google Scholar]
  41. Dessarthe B, Thedrez A, Latouche JB, et al. CRTAM receptor engagement by Necl-2 on tumor cells triggers cell death of activated vgamma9vdelta2 T Cells. J immunol 2013 ; 190 : 4868–4876. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.