Open Access
Issue
Med Sci (Paris)
Volume 35, Number 4, Avril 2019
Page(s) 309 - 315
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019068
Published online 30 April 2019
  1. Hess GT, Tycko J, Yao D, Bassik MC. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol Cell 2017 ; 68 : 26–43. [CrossRef] [PubMed] [Google Scholar]
  2. Arber W.. Restriction endonucleases. Angew Chem Int Ed Engl 1978 ; 17 : 73–79. [CrossRef] [PubMed] [Google Scholar]
  3. Redondo P, Prieto J, Munoz IG, et al. Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 2008 ; 456 : 107–111. [CrossRef] [PubMed] [Google Scholar]
  4. Stoddard BL. Homing endonucleases : from microbial genetic invaders to reagents for targeted DNA modification. Structure 2011 ; 19 : 7–15. [CrossRef] [PubMed] [Google Scholar]
  5. Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005 ; 435 : 646–651. [CrossRef] [PubMed] [Google Scholar]
  6. Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014 ; 370 : 901–910. [CrossRef] [PubMed] [Google Scholar]
  7. Sunderland M, Peggs Z. succesful translation and future prospects of TALEN editing for leukemia patients. Expert Opin Biol Ther 2018 ; 18 : 725–726. [Google Scholar]
  8. Cellectis. la FDA autorise l’essai clinique pour UCART22 en leucémie lymphoblastique aiguë à cellules B. http://www.cellectis.com/fr/press/la-fda-autorise-lessai-clinique-pour-ucart22-en-leucemie-lymphoblastique-aigue-a-cellules-b2018. [Google Scholar]
  9. Jordan B.. Les débuts de CRISPR en thérapie génique. Med Sci (Paris) 2016 ; 32 : 1035–1037. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Sharma R, Anguela XM, Doyon Y, et al. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 2015 ; 126 : 1777–1784. [Google Scholar]
  11. Hirsch T, Rothoeft T, Teig N, et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature 2017 ; 551 : 327–332. [CrossRef] [PubMed] [Google Scholar]
  12. Lee C, Bao G, Porteus MH, et al. Gene editing with Crispr-Cas9 for treating beta-hemoglobinopathies. Blood 2015; 126. [Google Scholar]
  13. Charlesworth C, Desphande P, Dever D, et al. Identification of pre-existing adaptive immunity to Cas9 proteins in humans. BioXriv 2018. https://doi.org/10.1101/243345. [Google Scholar]
  14. Simhadri VL, McGill J, McMahon S, et al. Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the USA population. Mol Ther Methods Clin Dev 2018 ; 10 : 105–112. [CrossRef] [PubMed] [Google Scholar]
  15. Crudele JM, Chamberlain JS. Cas9 immunity creates challenges for CRISPR gene editing therapies. Nat Commun 2018 ; 9 : 3497. [CrossRef] [PubMed] [Google Scholar]
  16. Chen Y, Zhang Y. Application of the CRISPR/Cas9 system to drug resistance in breast cancer. Adv Sci (Weinh) 2018 ; 5 : 1700964. [CrossRef] [PubMed] [Google Scholar]
  17. Bredel M, Jacoby E. Chemogenomics : an emerging strategy for rapid target and drug discovery. Nat Rev Genet 2004 ; 5 : 262–275. [CrossRef] [PubMed] [Google Scholar]
  18. la Villa P.. miniaturisation pour la découverte de candidats médicaments. L’Actualité Chimique 2017; 67–70. [Google Scholar]
  19. Ks N. les modificateurs de la réponse biologique pour réduire l’inflammation : pleins feux sur les rusques d’infection. Pediatr Child Health 2012 ; 17 : 151–154. [CrossRef] [Google Scholar]
  20. Arnoldo A, Kittanakom S, Heisler LE, et al. A genome scale overexpression screen to reveal drug activity in human cells. Genome Med 2014 ; 6 : 32. [CrossRef] [PubMed] [Google Scholar]
  21. Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015 ; 517 : 583–588. [CrossRef] [PubMed] [Google Scholar]
  22. Rusk N.. CRISPR gain-of-function screens. Nat Methods 2015 ; 12 : 102–103. [CrossRef] [PubMed] [Google Scholar]
  23. le Sage C, Lawo S, Panicker P, et al. Dual direction CRISPR transcriptional regulation screening uncovers gene networks driving drug resistance. Sci Rep 2017 ; 7 : 17693. [CrossRef] [PubMed] [Google Scholar]
  24. Lin S, Liu K, Zhang Y, et al. Pharmacological targeting of p38 MAP-kinase 6 (MAP2K6) inhibits the growth of esophageal adenocarcinoma. Cell Signal 2018 ; 51 : 222–232. [CrossRef] [PubMed] [Google Scholar]
  25. Banerjee S, Ji C, Mayfield JE, et al. Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proc Natl Acad Sci USA 2018 ; 115 : 8155–8160. [CrossRef] [Google Scholar]
  26. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 2017 ; 376 : 1713–1722. [CrossRef] [PubMed] [Google Scholar]
  27. Tao W, Yang A, Deng Z, Sun Y. CRISPR/Cas9-Based editing of streptomyces for discovery, characterization, and production of natural products. Front Microbiol 2018 ; 9 : 1660. [CrossRef] [PubMed] [Google Scholar]
  28. Zhang MM, Wong FT, Wang Y, et al. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol 2017. 10.1038/nchembio.2341 [Google Scholar]
  29. Li L, Zheng G, Chen J, et al. Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. Metab Eng 2017 ; 40 : 80–92. [CrossRef] [PubMed] [Google Scholar]
  30. Birling MC, Herault Y, Pavlovic G. Modeling human disease in rodents by CRISPR/Cas9 genome editing. Mamm Genome 2017 ; 28 : 291–301. [CrossRef] [PubMed] [Google Scholar]
  31. Bhatia S, Daschkey S, Lang F, et al. Mouse models for pre-clinical drug testing in leukemia. Expert Opin Drug Discov 2016 ; 11 : 1081–1091. [CrossRef] [PubMed] [Google Scholar]
  32. hutchinson L, Kirk R. high drug attrition rates- where are we going wrong ? Nat Rev Clin Oncol 2011; 8. [Google Scholar]
  33. Perlman RL. Mouse models of human disease : an evolutionary perspective. Evol Med Public Health 2016 ; 2016 : 170–176. [PubMed] [Google Scholar]
  34. Takahashi T.. Organoids for drug discovery and personalized medicine. Annu Rev Pharmacol Toxicol 2019 ; 59 : 447–462. [Google Scholar]
  35. Borestrom C, Jonebring A, Guo J, et al. A CRISP(e)R view on kidney organoids allows generation of an induced pluripotent stem cell-derived kidney model for drug discovery. Kidney Int 2018 ; 94 : 1099–1110. [CrossRef] [PubMed] [Google Scholar]
  36. Clayton NP, Burwell A, Jensen H, et al. Preparation of three-dimensional (3-D) human liver (HepaRG) cultures for histochemical and immunohistochemical staining and light microscopic evaluation. Toxicol Pathol 2018 ; 46 : 653–659. [CrossRef] [PubMed] [Google Scholar]
  37. Higuchi Y, Kawai K, Kanaki T, et al. Functional polymer-dependent 3D culture accelerates the differentiation of HepaRG cells into mature hepatocytes. Hepatol Res 2016 ; 46 : 1045–1057. [CrossRef] [PubMed] [Google Scholar]
  38. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer 2018 ; 18 : 407–418. [Google Scholar]
  39. Watanabe M, Buth JE, Vishlaghi N, et al. Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep 2017 ; 21 : 517–532. [CrossRef] [PubMed] [Google Scholar]
  40. Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004 ; 303 : 844–848. [Google Scholar]
  41. Boccardo F, Canobbio L I. 5-fluorouracil, twenty-five years later. An appraisal. Chemioterapia 1983 ; 2 : 88–96. [Google Scholar]
  42. Auclair G, Weber M. Mechanisms of DNA methylation and demethylation in mammals. Biochimie 2012 ; 94 : 2202–2211. [CrossRef] [PubMed] [Google Scholar]
  43. Holtzman L, Gersbach CA. Editing the epigenome : reshaping the genomic landscape. Annu Rev Genomics Hum Genet 2018 ; 19 : 43–71. [CrossRef] [PubMed] [Google Scholar]
  44. Bian S, Repic M, Guo Z, et al. Genetically engineered cerebral organoids model brain tumor formation. Nat Methods 2018 ; 15 : 631–639. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.