Open Access
Numéro
Med Sci (Paris)
Volume 35, Numéro 4, Avril 2019
Page(s) 316 - 326
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019067
Publié en ligne 30 avril 2019
  1. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018 ; 359 : 1350–1355. [Google Scholar]
  2. Catros V, Dessarthe B, Thedrez A, Toutirais O. Les récepteurs de nectines/nectines-like DNAM-1 et CRTAM. Immuno-surveillance ou échappement tumoral ?. Med Sci (Paris) 2014 ; 30 : 537–543. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Granier C, Gey A, Dariane C, et al. Tim-3. Biomarqueur et cible thérapeutique en cancérologie. Med Sci (Paris) 2018 ; 34 : 231–237. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT : Co-inhibitory receptors with specialized functions in immune regulation. Immunity 2016 ; 44 : 989–1004. [CrossRef] [PubMed] [Google Scholar]
  5. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012 ; 12 : 252–264. [Google Scholar]
  6. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017 ; 541 : 321–330. [CrossRef] [PubMed] [Google Scholar]
  7. Catros-Quemener V, Bouet F, Genetet N. Immunité anti-tumorale et thérapies cellulaires du cancer. Med Sci (Paris) 2003 ; 19 : 43–53. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 2011 ; 17 : 4550–4557. [CrossRef] [PubMed] [Google Scholar]
  9. Catros V, Toutirais O, Bouet F, et al. Lymphocytes Tγδ en cancérologie : des lymphocytes tueurs non conventionnels. Med Sci (Paris) 2010 ; 26 : 185–191. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Ruella M, Kalos M. Adoptive immunotherapy for cancer. Immunol Rev 2014 ; 257 : 14–38. [CrossRef] [PubMed] [Google Scholar]
  11. Castellarin M, Watanabe K, June CH, et al. Driving cars to the clinic for solid tumors. Gene Ther 2018 ; 25 : 165–175. [CrossRef] [PubMed] [Google Scholar]
  12. Sadelain M, Riviere I, Riddell S. Therapeutic T cell engineering. Nature 2017 ; 545 : 423–431. [CrossRef] [PubMed] [Google Scholar]
  13. Kohl U, Arsenieva S, Holzinger A, Abken H. CAR T cells in trials : Recent achievements and challenges that remain in the production of modified T cells for clinical applications. Hum Gene Ther 2018 ; 29 : 559–568. [Google Scholar]
  14. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989 ; 86 : 10024–10028. [CrossRef] [Google Scholar]
  15. Hwu P, Shafer GE, Treisman J, et al. Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor gamma chain. J Exp Med 1993 ; 178 : 361–366. [CrossRef] [PubMed] [Google Scholar]
  16. Cooper LJ, Topp MS, Serrano LM, et al. T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect. Blood 2003 ; 101 : 1637–1644. [Google Scholar]
  17. Pule MA, Savoldo B, Myers GD, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors : persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008 ; 14 : 1264–1270. [CrossRef] [PubMed] [Google Scholar]
  18. Kochenderfer JN, Wilson WH, Janik JE, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010 ; 116 : 4099–4102. [Google Scholar]
  19. Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011 ; 365 : 725–733. [Google Scholar]
  20. Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5 : 177ra38. [CrossRef] [PubMed] [Google Scholar]
  21. Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014; 6 : 224ra25. [CrossRef] [PubMed] [Google Scholar]
  22. Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 2015; 7 : 303ra139. [CrossRef] [PubMed] [Google Scholar]
  23. Jordan B.. Immunothérapie « CAR-T » : une autorisation qui fait date. Med Sci (Paris) 2017 ; 33 : 1003–1006. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Perales MA, Kebriaei P, Kean LS, Sadelain M. Biol Blood Marrow Transplant 2018 ; 24 : 27–31. [CrossRef] [PubMed] [Google Scholar]
  25. Johnson LA, June CH. Driving gene-engineered T cell immunotherapy of cancer. Cell Res 2017 ; 27 : 38–58. [CrossRef] [PubMed] [Google Scholar]
  26. Liu Y, Zhao C, Gao L, et al. Considerations for clinical review of cellular therapy products : perspectives of the china food and drug administration center for drug evaluation. Hum Gene Ther 2018 ; 29 : 121–127. [Google Scholar]
  27. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell 2017 ; 168 : 724–740. [CrossRef] [PubMed] [Google Scholar]
  28. O’Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017; 9. [Google Scholar]
  29. Posey AD, Jr, Schwab RD, Boesteanu AC, et al. Engineered CAR T cells targeting the cancer-associated tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 2016 ; 44 : 1444–1454. [CrossRef] [PubMed] [Google Scholar]
  30. Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med 2017 ; 68 : 139–152. [CrossRef] [PubMed] [Google Scholar]
  31. Hudecek M, Sommermeyer D, Kosasih PL, et al. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res 2015 ; 3 : 125–135. [PubMed] [Google Scholar]
  32. Kawalekar OU, RS OC, Fraietta JA, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T Cells. Immunity 2016 ; 44 : 712. [Google Scholar]
  33. Guedan S, Posey AD, Jr., Shaw C, et al. Enhancing CAR T cell persistence through ICOS and 4–1BB costimulation. JCI Insight 2018; 3. [Google Scholar]
  34. Chmielewski M, Abken H. CAR T cells releasing IL-18 convert to T-Bet(high) FoxO1(low) effectors that exhibit augmented activity against advanced solid tumors. Cell Rep 2017 ; 21 : 3205–3219. [CrossRef] [PubMed] [Google Scholar]
  35. Hartmann J, Schussler-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 2017 ; 9 : 1183–1197. [CrossRef] [PubMed] [Google Scholar]
  36. Migliorini D, Dietrich PY, Stupp R, et al. CAR T-cell therapies in glioblastoma : a first look. Clin Cancer Res 2018 ; 24 : 535–540. [CrossRef] [PubMed] [Google Scholar]
  37. Fraietta JA, Nobles CL, Sammons MA, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 2018 ; 558 : 307–312. [CrossRef] [PubMed] [Google Scholar]
  38. Ruella M, Kenderian SS. Next-generation chimeric antigen receptor T-cell therapy : going off the shelf. BioDrugs 2017 ; 31 : 473–481. [CrossRef] [PubMed] [Google Scholar]
  39. Thedrez A, Lavoue V, Dessarthe B, et al. A quantitative deficiency in peripheral blood Vgamma9Vdelta2 cells is a negative prognostic biomarker in ovarian cancer patients. PLoS One 2013 ; 8 : e63322. [CrossRef] [PubMed] [Google Scholar]
  40. Marcu-Malina V, Heijhuurs S, van Buuren M, et al. Redirecting alphabeta T cells against cancer cells by transfer of a broadly tumor-reactive gammadeltaT-cell receptor. Blood 2011 ; 118 : 50–59. [Google Scholar]
  41. Dessarthe B, Thedrez A, Latouche JB, et al. CRTAM receptor engagement by Necl-2 on tumor cells triggers cell death of activated vgamma9vdelta2 T Cells. J immunol 2013 ; 190 : 4868–4876. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.