Addictions
Free Access
Issue
Med Sci (Paris)
Volume 31, Number 6-7, Juin–Juillet 2015
Addictions
Page(s) 674 - 679
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153106022
Published online 07 July 2015
  1. Limousin P, Pollak P, Benazzouz A, et al. Effect of Parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995 ; 345 : 91–5. [CrossRef] [PubMed] [Google Scholar]
  2. Ersche KD, Barnes A, Jones PS, et al. Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain 2011 ; 134 : 2013–2024. [CrossRef] [PubMed] [Google Scholar]
  3. Porrino LJ, Smith HR, Nader MA, Beveridge TJ.. The effects of cocaine: a shifting target over the course of addiction. Prog Neuropsychopharmacol Biol Psychiatry 2007 ; 31 : 1593–1600. [CrossRef] [PubMed] [Google Scholar]
  4. Li N, Wang J, Wang XL, et al. Nucleus accumbens surgery for addiction. World Neurosurg 2013 ; 80 : S28.e9–19. [Google Scholar]
  5. Kuhn J, Lenartz D, Huff W, et al. Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens : valuable therapeutic implications ? J Neurol Neurosurg Psychiatry 2007 ; 78 : 1152–1153. [CrossRef] [PubMed] [Google Scholar]
  6. Kuhn J, Bauer R, Pohl S, et al. Observations on unaided smoking cessation after deep brain stimulation of the nucleus accumbens. Eur Addict Res 2009 ; 15 : 196–201. [CrossRef] [PubMed] [Google Scholar]
  7. Mantione M, van de Brink W, Schuurman PR, Denys D.. Smoking cessation and weight loss after chronic deep brain stimulation of the nucleus accumbens: therapeutic and research implications: case report. Neurosurgery 2010 ; 66 : E218. [CrossRef] [PubMed] [Google Scholar]
  8. Saleh C, Okun MS.. Clinical review of deep brain stimulation and its effects on limbic basal ganglia circuitry. Front Biosci 2008 ; 13 : 5708–5731. [CrossRef] [PubMed] [Google Scholar]
  9. Luigjes J, Mantione M, van den Brink W, et al. Deep brain stimulation increases impulsivity in two patients with obsessive-compulsive disorder. Int Clin Psychopharmacol 2011 ; 26 : 338–340. [PubMed] [Google Scholar]
  10. Liu HY, Jin J, Tang JS, et al. Chronic deep brain stimulation in the rat nucleus accumbens and its effect on morphine reinforcement. Addict Biol 2008 ; 13 : 40–46. [CrossRef] [PubMed] [Google Scholar]
  11. Stelten BM, Noblesse LH, Ackermans L, et al. The neurosurgical treatment of addiction. Neurosurg Focus 2008 ; 25 : E5. [CrossRef] [Google Scholar]
  12. Valencia-Alfonso CE, Luigjes J, Smolders R, et al. Effective deep brain stimulation in heroin addiction: a case report with complementary intracranial electroencephalogram. Biol Psychiatry 2012 ; 71 : e35–e37. [CrossRef] [PubMed] [Google Scholar]
  13. Zhou H, Xu J, Jiang J.. Deep brain stimulation of nucleus accumbens on heroin-seeking behaviors: a case report. Biol Psychiatry 2011 ; 69 : e41–e42. [CrossRef] [PubMed] [Google Scholar]
  14. Kuhn J, Möller M, Treppmann JF, et al. Deep brain stimulation of the nucleus accumbens and its usefulness in severe opioid addiction. Mol Psychiatry 2014 ; 19 : 145–146. [CrossRef] [Google Scholar]
  15. Kuhn J, Gründler TO, Bauer R, et al. Successful deep brain stimulation of the nucleus accumbens in severe alcohol dependence is associated with changed performance monitoring. Addict Biol 2011 ; 16 : 620–623. [CrossRef] [PubMed] [Google Scholar]
  16. Müller UJ, Sturm V, Voges J, et al. Successful treatment of chronic resistant alcoholism by deep brain stimulation of nucleus accumbens: first experience with three cases. Pharmacopsychiatry 2009 ; 42 : 288–291. [CrossRef] [PubMed] [Google Scholar]
  17. Heimer L.. Basal forebrain in the context of schizophrenia. Brain Res Brain Res Rev 2000 ; 31 : 205–235. [CrossRef] [PubMed] [Google Scholar]
  18. Guo L, Zhou H, Wang R, et al. DBS of nucleus accumbens on heroin seeking behaviors in self-administering rats. Drug Alcohol Depend 2013 ; 129 : 70–81. [CrossRef] [PubMed] [Google Scholar]
  19. Knapp CM, Tozier L, Pak A, et al. Deep brain stimulation of the nucleus accumbens reduces ethanol consumption in rats. Pharmacol Biochem Behav 2009 ; 92 : 474–479. [CrossRef] [PubMed] [Google Scholar]
  20. Henderson MB, Green AI, Bradford PS, et al. Deep brain stimulation of the nucleus accumbens reduces alcohol intake in alcohol-preferring rats. Neurosurg Focus 2010 ; 29 : E12. [CrossRef] [Google Scholar]
  21. Wilden JA, Qing KY, Hauser SR, et al. Reduced ethanol consumption by alcohol-preferring (P) rats following pharmacological silencing and deep brain stimulation of the nucleus accumbens shell. J Neurosurg 2014 ; 120 : 997–1005. [CrossRef] [PubMed] [Google Scholar]
  22. Vassoler FM, Schmidt HD, Gerard ME, et al. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug seeking in rats. J Neurosci 2008 ; 28 : 8735–8739. [CrossRef] [PubMed] [Google Scholar]
  23. Vassoler FM, White SL, Hopkins TJ, et al. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine reinstatement through local and antidromic activation. J Neurosci 2013 ; 33 : 14446–14454. [CrossRef] [PubMed] [Google Scholar]
  24. Van der Plasse G, Schrama R, van Seters SP, et al. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat. PLoS One 2012 ; 7 : e33455. [CrossRef] [PubMed] [Google Scholar]
  25. Guercio LA, Schmidt HD, Pierce RC.. Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats. Behav Brain Res 2014 ; 281C : 125–130. [Google Scholar]
  26. Creed M, Pascoli VJ, Lüscher C.. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 2015 ; 347 : 659–664. [CrossRef] [PubMed] [Google Scholar]
  27. Mallet L, Polosan M, Jaafari N, et al. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med 2008 ; 359 : 2121–2134. [CrossRef] [PubMed] [Google Scholar]
  28. Witjas T, Baunez C, Henry JM, et al. Addiction in Parkinson’s disease: impact of subthalamic nucleus deep brain stimulation. Mov Disord 2005 ; 20 : 1052–1055. [CrossRef] [PubMed] [Google Scholar]
  29. Lhommee E, Klinger H, Thobois S, et al. Subthalamic stimulation in Parkinson’s disease: restoring the balance of motivated behaviours. Brain 2012 ; 135 : 1463–1477. [CrossRef] [PubMed] [Google Scholar]
  30. Eusebio A, Witjas T, Cohen J, et al. Subthalamic nucleus stimulation and compulsive use of dopaminergic medication in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2013 ; 84 : 868–874. [CrossRef] [PubMed] [Google Scholar]
  31. Lardeux S, Pernaud R, Paleressompoulle D, Baunez C.. Beyond the reward pathway: coding of the reward salience and error in the rat subthalamic nucleus. J Neurophysiol 2009 ; 102 : 2526–2537. [CrossRef] [PubMed] [Google Scholar]
  32. Lardeux S, Paleressompoulle D, Pernaud R, et al. Different populations of subthalamic neurons encode cocaine and sucrose reward and predict error. J Neurophysiol 2013 ; 110 : 1497–1510. [CrossRef] [PubMed] [Google Scholar]
  33. Darbaky Y, Baunez C, Arecchi P, et al. Reward-related neuronal activity in the subthalamic nucleus of the monkey. Neuroreport 2005 ; 16 : 1241–1244. [CrossRef] [PubMed] [Google Scholar]
  34. Zijlstra F, Veltman DJ, Booij J, et al. Neurobiological substrates of cue-elicited craving and anhedonia in recently abstinent opioid-dependent males. Drug Alcohol Depend 2009 ; 99 : 183–192. [CrossRef] [PubMed] [Google Scholar]
  35. Baunez C, Dias C, Cador M, Amalric M.. The subthalamic nucleus exerts opposite control on cocaine and natura rewards. Nat Neurosci 2005 ; 8 : 484–489. [PubMed] [Google Scholar]
  36. Rouaud T, Lardeux S, Panayotis N, et al. Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc Natl Acad Sci USA 2010 ; 107 : 1196–200. [CrossRef] [Google Scholar]
  37. Pelloux Y, Baunez C.. Deep brain stimulation for addiction: why the subthalamic nucleus should be favored. Curr Opin Neurobiol 2013 ; 23 : 713–720. [CrossRef] [PubMed] [Google Scholar]
  38. Baunez C, Amalric M, Robbins TW.. Enhanced food-related motivation after bilateral lesions of the subthalamic nucleus. J Neurosci 2002 ; 22 : 562–568. [PubMed] [Google Scholar]
  39. Baracz SJ, Rourke PI, Pardey MC, et al. Oxytocin directly administered into the nucleus accumbens core or subthalamic nucleus attenuates methamphetamine-induced conditioned place preference. Behav Brain Res 2012 ; 228 : 185–193. [CrossRef] [PubMed] [Google Scholar]
  40. Ahmed SH, Koob GF.. Transition from moderate to excessive drug intake: change in hedonic set point. Science 1998 ; 282 : 298–300. [CrossRef] [PubMed] [Google Scholar]
  41. Pelloux Y, Meffre J, Giorla E, Baunez C.. The subthalamic nucleus keeps you high on emotion: behavioral consequences of its inactivation. Frontiers Behav Neurosci 2014 ; 8 : 414. [CrossRef] [Google Scholar]
  42. Péron J, Frühholz S, Vérin M, Grandjean D.. Subthalamic nucleus: a key structure for emotional component synchronization in humans. Neurosci Biobehav Rev 2013 ; 37 : 358–373. [CrossRef] [PubMed] [Google Scholar]
  43. Ramoz N, Gorwood P.. Les addictions sous l’angle de la génétique. Med Sci (Paris) 2015 ; 31 : 432–438. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Arango-Lievano M, Kaplitt MG.. Comorbidité entre la dépression et l’addiction : vers une cible moléculaire commune ? Med Sci (Paris) 2015 ; 31 : 546–550. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Alves dos Santos JF, Mallet L.. Le trouble obsessionnel compulsif. Med Sci (Paris) 2013 ; 29 : 1111–1116. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Dugué GP, Tricoire L.. Principes et applications de l’optogénétique en neuroscience. Med Sci (Paris) 2015 ; 31 : 291–303. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.