Addictions
Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 6-7, Juin–Juillet 2015
Addictions
Page(s) 674 - 679
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153106022
Publié en ligne 7 juillet 2015
  1. Limousin P, Pollak P, Benazzouz A, et al. Effect of Parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995 ; 345 : 91–5. [CrossRef] [PubMed]
  2. Ersche KD, Barnes A, Jones PS, et al. Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain 2011 ; 134 : 2013–2024. [CrossRef] [PubMed]
  3. Porrino LJ, Smith HR, Nader MA, Beveridge TJ.. The effects of cocaine: a shifting target over the course of addiction. Prog Neuropsychopharmacol Biol Psychiatry 2007 ; 31 : 1593–1600. [CrossRef] [PubMed]
  4. Li N, Wang J, Wang XL, et al. Nucleus accumbens surgery for addiction. World Neurosurg 2013 ; 80 : S28.e9–19.
  5. Kuhn J, Lenartz D, Huff W, et al. Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens : valuable therapeutic implications ? J Neurol Neurosurg Psychiatry 2007 ; 78 : 1152–1153. [CrossRef] [PubMed]
  6. Kuhn J, Bauer R, Pohl S, et al. Observations on unaided smoking cessation after deep brain stimulation of the nucleus accumbens. Eur Addict Res 2009 ; 15 : 196–201. [CrossRef] [PubMed]
  7. Mantione M, van de Brink W, Schuurman PR, Denys D.. Smoking cessation and weight loss after chronic deep brain stimulation of the nucleus accumbens: therapeutic and research implications: case report. Neurosurgery 2010 ; 66 : E218. [CrossRef] [PubMed]
  8. Saleh C, Okun MS.. Clinical review of deep brain stimulation and its effects on limbic basal ganglia circuitry. Front Biosci 2008 ; 13 : 5708–5731. [CrossRef] [PubMed]
  9. Luigjes J, Mantione M, van den Brink W, et al. Deep brain stimulation increases impulsivity in two patients with obsessive-compulsive disorder. Int Clin Psychopharmacol 2011 ; 26 : 338–340. [PubMed]
  10. Liu HY, Jin J, Tang JS, et al. Chronic deep brain stimulation in the rat nucleus accumbens and its effect on morphine reinforcement. Addict Biol 2008 ; 13 : 40–46. [CrossRef] [PubMed]
  11. Stelten BM, Noblesse LH, Ackermans L, et al. The neurosurgical treatment of addiction. Neurosurg Focus 2008 ; 25 : E5. [CrossRef]
  12. Valencia-Alfonso CE, Luigjes J, Smolders R, et al. Effective deep brain stimulation in heroin addiction: a case report with complementary intracranial electroencephalogram. Biol Psychiatry 2012 ; 71 : e35–e37. [CrossRef] [PubMed]
  13. Zhou H, Xu J, Jiang J.. Deep brain stimulation of nucleus accumbens on heroin-seeking behaviors: a case report. Biol Psychiatry 2011 ; 69 : e41–e42. [CrossRef] [PubMed]
  14. Kuhn J, Möller M, Treppmann JF, et al. Deep brain stimulation of the nucleus accumbens and its usefulness in severe opioid addiction. Mol Psychiatry 2014 ; 19 : 145–146. [CrossRef]
  15. Kuhn J, Gründler TO, Bauer R, et al. Successful deep brain stimulation of the nucleus accumbens in severe alcohol dependence is associated with changed performance monitoring. Addict Biol 2011 ; 16 : 620–623. [CrossRef] [PubMed]
  16. Müller UJ, Sturm V, Voges J, et al. Successful treatment of chronic resistant alcoholism by deep brain stimulation of nucleus accumbens: first experience with three cases. Pharmacopsychiatry 2009 ; 42 : 288–291. [CrossRef] [PubMed]
  17. Heimer L.. Basal forebrain in the context of schizophrenia. Brain Res Brain Res Rev 2000 ; 31 : 205–235. [CrossRef] [PubMed]
  18. Guo L, Zhou H, Wang R, et al. DBS of nucleus accumbens on heroin seeking behaviors in self-administering rats. Drug Alcohol Depend 2013 ; 129 : 70–81. [CrossRef] [PubMed]
  19. Knapp CM, Tozier L, Pak A, et al. Deep brain stimulation of the nucleus accumbens reduces ethanol consumption in rats. Pharmacol Biochem Behav 2009 ; 92 : 474–479. [CrossRef] [PubMed]
  20. Henderson MB, Green AI, Bradford PS, et al. Deep brain stimulation of the nucleus accumbens reduces alcohol intake in alcohol-preferring rats. Neurosurg Focus 2010 ; 29 : E12. [CrossRef]
  21. Wilden JA, Qing KY, Hauser SR, et al. Reduced ethanol consumption by alcohol-preferring (P) rats following pharmacological silencing and deep brain stimulation of the nucleus accumbens shell. J Neurosurg 2014 ; 120 : 997–1005. [CrossRef] [PubMed]
  22. Vassoler FM, Schmidt HD, Gerard ME, et al. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug seeking in rats. J Neurosci 2008 ; 28 : 8735–8739. [CrossRef] [PubMed]
  23. Vassoler FM, White SL, Hopkins TJ, et al. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine reinstatement through local and antidromic activation. J Neurosci 2013 ; 33 : 14446–14454. [CrossRef] [PubMed]
  24. Van der Plasse G, Schrama R, van Seters SP, et al. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat. PLoS One 2012 ; 7 : e33455. [CrossRef] [PubMed]
  25. Guercio LA, Schmidt HD, Pierce RC.. Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats. Behav Brain Res 2014 ; 281C : 125–130.
  26. Creed M, Pascoli VJ, Lüscher C.. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 2015 ; 347 : 659–664. [CrossRef] [PubMed]
  27. Mallet L, Polosan M, Jaafari N, et al. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med 2008 ; 359 : 2121–2134. [CrossRef] [PubMed]
  28. Witjas T, Baunez C, Henry JM, et al. Addiction in Parkinson’s disease: impact of subthalamic nucleus deep brain stimulation. Mov Disord 2005 ; 20 : 1052–1055. [CrossRef] [PubMed]
  29. Lhommee E, Klinger H, Thobois S, et al. Subthalamic stimulation in Parkinson’s disease: restoring the balance of motivated behaviours. Brain 2012 ; 135 : 1463–1477. [CrossRef] [PubMed]
  30. Eusebio A, Witjas T, Cohen J, et al. Subthalamic nucleus stimulation and compulsive use of dopaminergic medication in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2013 ; 84 : 868–874. [CrossRef] [PubMed]
  31. Lardeux S, Pernaud R, Paleressompoulle D, Baunez C.. Beyond the reward pathway: coding of the reward salience and error in the rat subthalamic nucleus. J Neurophysiol 2009 ; 102 : 2526–2537. [CrossRef] [PubMed]
  32. Lardeux S, Paleressompoulle D, Pernaud R, et al. Different populations of subthalamic neurons encode cocaine and sucrose reward and predict error. J Neurophysiol 2013 ; 110 : 1497–1510. [CrossRef] [PubMed]
  33. Darbaky Y, Baunez C, Arecchi P, et al. Reward-related neuronal activity in the subthalamic nucleus of the monkey. Neuroreport 2005 ; 16 : 1241–1244. [CrossRef] [PubMed]
  34. Zijlstra F, Veltman DJ, Booij J, et al. Neurobiological substrates of cue-elicited craving and anhedonia in recently abstinent opioid-dependent males. Drug Alcohol Depend 2009 ; 99 : 183–192. [CrossRef] [PubMed]
  35. Baunez C, Dias C, Cador M, Amalric M.. The subthalamic nucleus exerts opposite control on cocaine and natura rewards. Nat Neurosci 2005 ; 8 : 484–489. [PubMed]
  36. Rouaud T, Lardeux S, Panayotis N, et al. Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc Natl Acad Sci USA 2010 ; 107 : 1196–200. [CrossRef]
  37. Pelloux Y, Baunez C.. Deep brain stimulation for addiction: why the subthalamic nucleus should be favored. Curr Opin Neurobiol 2013 ; 23 : 713–720. [CrossRef] [PubMed]
  38. Baunez C, Amalric M, Robbins TW.. Enhanced food-related motivation after bilateral lesions of the subthalamic nucleus. J Neurosci 2002 ; 22 : 562–568. [PubMed]
  39. Baracz SJ, Rourke PI, Pardey MC, et al. Oxytocin directly administered into the nucleus accumbens core or subthalamic nucleus attenuates methamphetamine-induced conditioned place preference. Behav Brain Res 2012 ; 228 : 185–193. [CrossRef] [PubMed]
  40. Ahmed SH, Koob GF.. Transition from moderate to excessive drug intake: change in hedonic set point. Science 1998 ; 282 : 298–300. [CrossRef] [PubMed]
  41. Pelloux Y, Meffre J, Giorla E, Baunez C.. The subthalamic nucleus keeps you high on emotion: behavioral consequences of its inactivation. Frontiers Behav Neurosci 2014 ; 8 : 414. [CrossRef]
  42. Péron J, Frühholz S, Vérin M, Grandjean D.. Subthalamic nucleus: a key structure for emotional component synchronization in humans. Neurosci Biobehav Rev 2013 ; 37 : 358–373. [CrossRef] [PubMed]
  43. Ramoz N, Gorwood P.. Les addictions sous l’angle de la génétique. Med Sci (Paris) 2015 ; 31 : 432–438. [CrossRef] [EDP Sciences] [PubMed]
  44. Arango-Lievano M, Kaplitt MG.. Comorbidité entre la dépression et l’addiction : vers une cible moléculaire commune ? Med Sci (Paris) 2015 ; 31 : 546–550. [CrossRef] [EDP Sciences] [PubMed]
  45. Alves dos Santos JF, Mallet L.. Le trouble obsessionnel compulsif. Med Sci (Paris) 2013 ; 29 : 1111–1116. [CrossRef] [EDP Sciences] [PubMed]
  46. Dugué GP, Tricoire L.. Principes et applications de l’optogénétique en neuroscience. Med Sci (Paris) 2015 ; 31 : 291–303. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.