Free Access
Issue
Med Sci (Paris)
Volume 31, Number 6-7, Juin–Juillet 2015
Page(s) 680 - 686
Section Forum
DOI https://doi.org/10.1051/medsci/20153106023
Published online 07 July 2015
  1. Pennisi E. ENCODE project writes eulogy for junk DNA. Science 2012 ; 337 : 1159–1161. [CrossRef] [PubMed] [Google Scholar]
  2. Dunham I, Kundaje A, Aldred SF, et al. An integrated encyclopedia of DNA elements in the human genome. Nature 2012 ; 489 : 57–74. [CrossRef] [PubMed] [Google Scholar]
  3. Rands CM, Meader S, Ponting CP, Lunter G.. 8.2% of the Human genome is constrained: variation in rates of turnover across functional element classes in the Human lineage. PLoS Genet 2014 ; 10 : e1004525. [CrossRef] [PubMed] [Google Scholar]
  4. Ponting CP, Hardison RC. What fraction of the human genome is functional? Genome Res 2011 ; 21 : 1769–1776. [CrossRef] [PubMed] [Google Scholar]
  5. Ecker JR. Forum: Genomics ENCODE explained. Nature 2012 ; 489 : 52–53. [CrossRef] [PubMed] [Google Scholar]
  6. The Alberts B.. End of small science? Science 2012 ; 337 : 1583. [CrossRef] [PubMed] [Google Scholar]
  7. Doolittle WF. Is junk DNA bunk? A critique of ENCODE. Proc Natl Acad Sci USA 2013 ; 110 : 5294–5300. [CrossRef] [Google Scholar]
  8. Eddy SR. The ENCODE project: missteps overshadowing a success. Curr Biol 2013 ; 23 : R259–R261. [CrossRef] [PubMed] [Google Scholar]
  9. Niu DK, Jiang L. Can ENCODE tell us how much junk DNA we carry in our genome? Biochem Biophys Res Commun 2013 ; 430 : 1340–1343. [CrossRef] [PubMed] [Google Scholar]
  10. Palazzo AF, Gregory TR., The case for junk DNA. PLoS Genet 2014 ; 10 : e1004351. [CrossRef] [PubMed] [Google Scholar]
  11. Graur D, Zheng YC, Price N, et al. On the immortality of television sets: function in the Human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol 2013 ; 5 : 578–590. [CrossRef] [PubMed] [Google Scholar]
  12. Muerdter F, Stark A. Genomics: hiding in plain sight. Nature 2014 ; 512 : 374–375. [CrossRef] [PubMed] [Google Scholar]
  13. Gerstein MB, Rozowsky J, Yan KK, et al. Comparative analysis of the transcriptome across distant species. Nature 2014 ; 512 : 445–448. [CrossRef] [PubMed] [Google Scholar]
  14. Doolittle WF, Brunet TDP, Linquist S, Gregory TR. Distinguishing between function and effect in genome biology. Genome Biol Evol 2014 ; 6 : 1234–1237. [CrossRef] [PubMed] [Google Scholar]
  15. Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 2007 ; 14 : 103–105. [CrossRef] [PubMed] [Google Scholar]
  16. Ruths T, Nakhleh L.. ncDNA, drift drive binding site accumulation. BMC Evol Biol 2012 ; 12 : 159. [CrossRef] [PubMed] [Google Scholar]
  17. Gould SJ, Lewontin RC. The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B 1979 ; 205 : 581–598. [CrossRef] [Google Scholar]
  18. Lynch M.. The origins of genome architecture. Sunderland, Massachusetts : Sinauer, 2007. [Google Scholar]
  19. Kimura M.. The neutral theory of molecular evolution. New York : Cambridge University Press, 1983. [CrossRef] [Google Scholar]
  20. Rice WR. Nothing in genetics makes sense except in light of genomic conflict. Annu Rev Ecol Evol Syst 2013 ; 44 : 217–237. [CrossRef] [Google Scholar]
  21. De Koning APJ, Gu WJ, Castoe TA, et al. Repetitive elements may comprise over two-thirds of the Human genome. Plos Genet 2011 ; 7 : e1002384. [CrossRef] [PubMed] [Google Scholar]
  22. Zhang ZL, Harrison PM, Liu Y, Gerstein M. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 2003 ; 13 : 2541–2558. [CrossRef] [PubMed] [Google Scholar]
  23. Jacobs FMJ, Greenberg D, Nguyen N, et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 2014 ; 516 : 242–245. [CrossRef] [PubMed] [Google Scholar]
  24. Hua-Van A, Le Rouzic A, Boutin TS, et al. The struggle for life of the genome’s selfish architects. Biol Direct 2011 ; 6 : 19. [CrossRef] [PubMed] [Google Scholar]
  25. Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science 2000 ; 290 : 1151–1155. [CrossRef] [PubMed] [Google Scholar]
  26. De Souza FSJ, Franchini LF, Rubinstein M. Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong? Mol Biol Evol 2013 ; 30 : 1239–1251. [CrossRef] [PubMed] [Google Scholar]
  27. Casane D, Laurenti P. Syllogomanie moléculaire : l’ADN non codant enrichit le jeu des possibles. Med Sci (Paris) 2014 ; 30 : 1177–1183. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  28. Oulion S, Debiais-Thibaud M, d’Aubenton-Carafa Y, et al. Evolution of Hox gene clusters in gnathostomes: insights from a survey of a shark (Scyliorhinus canicula) transcriptome. Mol Biol Evol 2010 ; 27 : 2829–2838. [CrossRef] [PubMed] [Google Scholar]
  29. Oulion S, Laurenti P, Casane D. Organisation des gènes Hox : l’étude de vertébrés non-modèles mène à un nouveau paradigme. Med Sci (Paris) 2012 ; 28 : 350–353. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Pascual-Anaya J, D’Aniello S, Kuratani S, Garcia-Fernandez J.. Evolution of Hox gene clusters in deuterostomesBMC Dev Biol 2013 ; 13 : 26. [CrossRef] [PubMed] [Google Scholar]
  31. Jordan B. Fugu story. Med Sci (Paris) 1994 ; 10 : 1154–1156. [CrossRef] [Google Scholar]
  32. Metcalfe CJ, Casane D.. Accommodating the load: the transposable element content of very large genomes. Mob Genet Elements 2013 ; 3 : e24775. [CrossRef] [PubMed] [Google Scholar]
  33. Metcalfe CJ, Filee J, Germon I, et al. Evolution of the Australian lungfish (Neoceratodus forsteri) genome: a major role for CR1 and L2 LINE elements. Mol Biol Evol 2012 ; 29 : 3529–3539. [CrossRef] [PubMed] [Google Scholar]
  34. Kapusta A, Feschotte C. Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends Genet 2014 ; 30 : 439–452. [CrossRef] [PubMed] [Google Scholar]
  35. De Vienne DM, Giraud T, Gouyon PH.. Lineage selection and the maintenance of sex. PLoS One 2013 ; 8 : e66906. [CrossRef] [PubMed] [Google Scholar]
  36. Boschetti C, Carr A, Crisp A, et al. Biochemical diversification through foreign gene expression in bdelloid rotifers. PLoS Genet 2012 ; 8 : e1003035. [CrossRef] [PubMed] [Google Scholar]
  37. Flot JF, Hespeels B, Li X, et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 2013 ; 500 : 453–457. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.