Chémobiologie
Free Access
Issue
Med Sci (Paris)
Volume 31, Number 6-7, Juin–Juillet 2015
Chémobiologie
Page(s) 667 - 673
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153106021
Published online 07 July 2015
  1. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011 ; 334 : 1081–1086. [CrossRef] [PubMed] [Google Scholar]
  2. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 2011 ; 13 : 184–190. [CrossRef] [PubMed] [Google Scholar]
  3. Rutkowski DT, Hegde RS. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J Cell Biol 2010 ; 189 : 783–794. [CrossRef] [PubMed] [Google Scholar]
  4. Bouchecareilh M, Chevet E. Stress du réticulum endoplasmique : une réponse pour éviter le pIRE. Med Sci (Paris) 2009 ; 25 : 281–287. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Foufelle F, Ferré P. La réponse UPR : son rôle physiologique et physiopathologique. Med Sci (Paris) 2007 ; 23 : 291–296. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Mimura N, Fulciniti M, Gorgun G, et al. Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood 2012 ; 119 : 5772–5781. [CrossRef] [PubMed] [Google Scholar]
  7. Papandreou I, Denko NC, Olson M, et al. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 2011 ; 117 : 1311–1314. [CrossRef] [PubMed] [Google Scholar]
  8. Sugiura K, Muro Y, Futamura K, et al. The unfolded protein response is activated in differentiating epidermal keratinocytes. J Invest Dermatol 2009 ; 129 : 2126–2135. [CrossRef] [PubMed] [Google Scholar]
  9. Chen X, Iliopoulos D, Zhang Q, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 2014 ; 508 : 103–107. [CrossRef] [PubMed] [Google Scholar]
  10. Wang L, Perera BG, Hari SB, et al. Divergent allosteric control of the IRE1alpha endoribonuclease using kinase inhibitors. Nat Chem Biol 2012 ; 8 : 982–989. [CrossRef] [PubMed] [Google Scholar]
  11. Siddiqui MA, Reddy PA. Small molecule JNK (c-Jun N-terminal kinase) inhibitors. J Med Chem 2010 ; 53 : 3005–3012. [CrossRef] [PubMed] [Google Scholar]
  12. Atkins C, Liu Q, Minthorn E, et al. Characterization of a Novel PERK kinase inhibitor with antitumor and anti-angiogenic activity. Cancer Res 2013 ; 73 : 1993–2002. [CrossRef] [PubMed] [Google Scholar]
  13. Axten JM, Medina JR, Feng Y, et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem 2012 ; 55 : 7193–7207. [CrossRef] [PubMed] [Google Scholar]
  14. Dejeans N, Pluquet O, Lhomond S, et al. Autocrine control of glioma cells adhesion and migration through IRE1alpha-mediated cleavage of SPARC mRNA. J Cell Sci 2012 ; 125 : 4278–4287. [CrossRef] [PubMed] [Google Scholar]
  15. Kardosh A, Golden EB, Pyrko P, et al. Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2, 5-dimethyl-celecoxib. Cancer Res 2008 ; 68 : 843–851. [CrossRef] [PubMed] [Google Scholar]
  16. D’Arcy P, Brnjic S, Olofsson MH, et al. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med 2011 ; 17 : 1636–1640. [CrossRef] [PubMed] [Google Scholar]
  17. Suraweera A, Munch C, Hanssum A, Bertolotti A. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol Cell 2012 ; 48 : 242–253. [CrossRef] [PubMed] [Google Scholar]
  18. Chou TF, Li K, Frankowski KJ, et al. Structure-activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. ChemMedChem 2013 ; 8 : 297–312. [CrossRef] [PubMed] [Google Scholar]
  19. Polucci P, Magnaghi P, Angiolini M, et al. Alkylsulfanyl-1, 2, 4-triazoles, a new class of allosteric valosine containing protein inhibitors. Synthesis and structure-activity relationships. J Med Chem 2013 ; 56 : 437–450. [CrossRef] [PubMed] [Google Scholar]
  20. Pyrko P, Schonthal AH, Hofman FM, et al. The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 2007 ; 67 : 9809–9816. [CrossRef] [PubMed] [Google Scholar]
  21. Li J, Ni M, Lee B, et al. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ 2008 ; 15 : 1460–1471. [CrossRef] [PubMed] [Google Scholar]
  22. Goloudina AR, Demidov ON, Garrido C. Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett 2012 ; 325 : 117–124. [CrossRef] [PubMed] [Google Scholar]
  23. Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 2012 ; 18 : 64–76. [CrossRef] [PubMed] [Google Scholar]
  24. Jones DT, Addison E, North JM, et al. Geldanamycin and herbimycin A induce apoptotic killing of B chronic lymphocytic leukemia cells and augment the cells’ sensitivity to cytotoxic drugs. Blood 2004 ; 103 : 1855–1861. [CrossRef] [PubMed] [Google Scholar]
  25. Goplen D, Wang J, Enger PO, et al. Protein disulfide isomerase expression is related to the invasive properties of malignant glioma. Cancer Res 2006 ; 66 : 9895–9902. [CrossRef] [PubMed] [Google Scholar]
  26. Lovat PE, Corazzari M, Armstrong JL, et al. Increasing melanoma cell death using inhibitors of protein disulfide isomerases to abrogate survival responses to endoplasmic reticulum stress. Cancer Res 2008 ; 68 : 5363–5369. [CrossRef] [PubMed] [Google Scholar]
  27. Hoffstrom BG, Kaplan A, Letso R, et al. Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins. Nat Chem Biol 2010 ; 6 : 900–906. [CrossRef] [PubMed] [Google Scholar]
  28. Boyce M, Bryant KF, Jousse C, et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 2005 ; 307 : 935–939. [CrossRef] [PubMed] [Google Scholar]
  29. Harding HP, Zhang Y, Scheuner D, et al. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proc Natl Acad Sci USA 2009 ; 106 : 1832–1837. [CrossRef] [Google Scholar]
  30. Lindquist SL, Kelly JW. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harbor Perspect Biol 2011 ; 3 : pii a004507. [CrossRef] [Google Scholar]
  31. Ozcan L, Ergin AS, Lu A, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 2009 ; 9 : 35–51. [CrossRef] [PubMed] [Google Scholar]
  32. Mizukami T, Orihashi K, Herlambang B, et al. Sodium 4-phenylbutyrate protects against spinal cord ischemia by inhibition of endoplasmic reticulum stress. J Vasc Surg 2010 ; 52 : 1580–1586. [CrossRef] [PubMed] [Google Scholar]
  33. Ben Mosbah I, Alfany-Fernandez I, Martel C, et al. Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia-reperfusion. Cell Death Dis 2010 ; 1 : e52. [CrossRef] [PubMed] [Google Scholar]
  34. Lee AH, Scapa E, Cohen D, Glimcher L. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 2008 ; 320 : 1492. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.