Accès gratuit
Med Sci (Paris)
Volume 31, Numéro 6-7, Juin–Juillet 2015
Page(s) 667 - 673
Section M/S Revues
Publié en ligne 7 juillet 2015
  1. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011 ; 334 : 1081–1086. [CrossRef] [PubMed] [Google Scholar]
  2. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 2011 ; 13 : 184–190. [CrossRef] [PubMed] [Google Scholar]
  3. Rutkowski DT, Hegde RS. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J Cell Biol 2010 ; 189 : 783–794. [CrossRef] [PubMed] [Google Scholar]
  4. Bouchecareilh M, Chevet E. Stress du réticulum endoplasmique : une réponse pour éviter le pIRE. Med Sci (Paris) 2009 ; 25 : 281–287. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Foufelle F, Ferré P. La réponse UPR : son rôle physiologique et physiopathologique. Med Sci (Paris) 2007 ; 23 : 291–296. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Mimura N, Fulciniti M, Gorgun G, et al. Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood 2012 ; 119 : 5772–5781. [CrossRef] [PubMed] [Google Scholar]
  7. Papandreou I, Denko NC, Olson M, et al. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 2011 ; 117 : 1311–1314. [CrossRef] [PubMed] [Google Scholar]
  8. Sugiura K, Muro Y, Futamura K, et al. The unfolded protein response is activated in differentiating epidermal keratinocytes. J Invest Dermatol 2009 ; 129 : 2126–2135. [CrossRef] [PubMed] [Google Scholar]
  9. Chen X, Iliopoulos D, Zhang Q, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 2014 ; 508 : 103–107. [CrossRef] [PubMed] [Google Scholar]
  10. Wang L, Perera BG, Hari SB, et al. Divergent allosteric control of the IRE1alpha endoribonuclease using kinase inhibitors. Nat Chem Biol 2012 ; 8 : 982–989. [CrossRef] [PubMed] [Google Scholar]
  11. Siddiqui MA, Reddy PA. Small molecule JNK (c-Jun N-terminal kinase) inhibitors. J Med Chem 2010 ; 53 : 3005–3012. [CrossRef] [PubMed] [Google Scholar]
  12. Atkins C, Liu Q, Minthorn E, et al. Characterization of a Novel PERK kinase inhibitor with antitumor and anti-angiogenic activity. Cancer Res 2013 ; 73 : 1993–2002. [CrossRef] [PubMed] [Google Scholar]
  13. Axten JM, Medina JR, Feng Y, et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem 2012 ; 55 : 7193–7207. [CrossRef] [PubMed] [Google Scholar]
  14. Dejeans N, Pluquet O, Lhomond S, et al. Autocrine control of glioma cells adhesion and migration through IRE1alpha-mediated cleavage of SPARC mRNA. J Cell Sci 2012 ; 125 : 4278–4287. [CrossRef] [PubMed] [Google Scholar]
  15. Kardosh A, Golden EB, Pyrko P, et al. Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2, 5-dimethyl-celecoxib. Cancer Res 2008 ; 68 : 843–851. [CrossRef] [PubMed] [Google Scholar]
  16. D’Arcy P, Brnjic S, Olofsson MH, et al. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med 2011 ; 17 : 1636–1640. [CrossRef] [PubMed] [Google Scholar]
  17. Suraweera A, Munch C, Hanssum A, Bertolotti A. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol Cell 2012 ; 48 : 242–253. [CrossRef] [PubMed] [Google Scholar]
  18. Chou TF, Li K, Frankowski KJ, et al. Structure-activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. ChemMedChem 2013 ; 8 : 297–312. [CrossRef] [PubMed] [Google Scholar]
  19. Polucci P, Magnaghi P, Angiolini M, et al. Alkylsulfanyl-1, 2, 4-triazoles, a new class of allosteric valosine containing protein inhibitors. Synthesis and structure-activity relationships. J Med Chem 2013 ; 56 : 437–450. [CrossRef] [PubMed] [Google Scholar]
  20. Pyrko P, Schonthal AH, Hofman FM, et al. The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 2007 ; 67 : 9809–9816. [CrossRef] [PubMed] [Google Scholar]
  21. Li J, Ni M, Lee B, et al. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ 2008 ; 15 : 1460–1471. [CrossRef] [PubMed] [Google Scholar]
  22. Goloudina AR, Demidov ON, Garrido C. Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett 2012 ; 325 : 117–124. [CrossRef] [PubMed] [Google Scholar]
  23. Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 2012 ; 18 : 64–76. [CrossRef] [PubMed] [Google Scholar]
  24. Jones DT, Addison E, North JM, et al. Geldanamycin and herbimycin A induce apoptotic killing of B chronic lymphocytic leukemia cells and augment the cells’ sensitivity to cytotoxic drugs. Blood 2004 ; 103 : 1855–1861. [CrossRef] [PubMed] [Google Scholar]
  25. Goplen D, Wang J, Enger PO, et al. Protein disulfide isomerase expression is related to the invasive properties of malignant glioma. Cancer Res 2006 ; 66 : 9895–9902. [CrossRef] [PubMed] [Google Scholar]
  26. Lovat PE, Corazzari M, Armstrong JL, et al. Increasing melanoma cell death using inhibitors of protein disulfide isomerases to abrogate survival responses to endoplasmic reticulum stress. Cancer Res 2008 ; 68 : 5363–5369. [CrossRef] [PubMed] [Google Scholar]
  27. Hoffstrom BG, Kaplan A, Letso R, et al. Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins. Nat Chem Biol 2010 ; 6 : 900–906. [CrossRef] [PubMed] [Google Scholar]
  28. Boyce M, Bryant KF, Jousse C, et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 2005 ; 307 : 935–939. [CrossRef] [PubMed] [Google Scholar]
  29. Harding HP, Zhang Y, Scheuner D, et al. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proc Natl Acad Sci USA 2009 ; 106 : 1832–1837. [CrossRef] [Google Scholar]
  30. Lindquist SL, Kelly JW. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harbor Perspect Biol 2011 ; 3 : pii a004507. [CrossRef] [Google Scholar]
  31. Ozcan L, Ergin AS, Lu A, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 2009 ; 9 : 35–51. [CrossRef] [PubMed] [Google Scholar]
  32. Mizukami T, Orihashi K, Herlambang B, et al. Sodium 4-phenylbutyrate protects against spinal cord ischemia by inhibition of endoplasmic reticulum stress. J Vasc Surg 2010 ; 52 : 1580–1586. [CrossRef] [PubMed] [Google Scholar]
  33. Ben Mosbah I, Alfany-Fernandez I, Martel C, et al. Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia-reperfusion. Cell Death Dis 2010 ; 1 : e52. [CrossRef] [PubMed] [Google Scholar]
  34. Lee AH, Scapa E, Cohen D, Glimcher L. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 2008 ; 320 : 1492. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.