Free Access
Med Sci (Paris)
Volume 31, Number 6-7, Juin–Juillet 2015
Page(s) 660 - 666
Section M/S Revues
Published online 07 July 2015
  1. Lindh M, Svensson F, Schaal W, et al. Toward a benchmarking data set able to evaluate ligand- and structure-based virtual screening using public HTS data. J Chem Inf Model 2015 ; 55 : 343–353. [CrossRef] [PubMed] [Google Scholar]
  2. Baell J, Walters M. Chemical con artists foil drug discovery. Nature 2014 ; 513 : 481–483. [CrossRef] [PubMed] [Google Scholar]
  3. Rognan D, Bonnet P. Les chimiothèques et le criblage virtuel. Med Sci (Paris) 2014 ; 30 : 1152–1160. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Ruggiu F, Gizzi P, Galzi JL, Hibert M, et al. Quantitative structure–property relationship modeling: a valuable support in high-throughput screening quality control. Anal Chem 2014 ; 86 : 2510–2520. [CrossRef] [PubMed] [Google Scholar]
  5. Klaus A.. On-line LC-NMR and related techniques. Chichester : Wiley, 2002 : 290 p. [Google Scholar]
  6. Semin D, Malone T, Paley M, Woods P. Novel approach to determine water content in DMSO for a compound collection. J Biomol Screen 2005 ; 10 : 568–572. [CrossRef] [PubMed] [Google Scholar]
  7. Engeloch C, Schopfer U, Muckenschnabel I, et al. Stability of screening compounds in wet DMSO. J Biomol Screen 2008 ; 13 : 999–1006. [CrossRef] [PubMed] [Google Scholar]
  8. Mahuteau-Betzer F. Chimiothèque Nationale. Med Sci (Paris) 2015 ; 31 : 417–422. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Spelman K, Duke JA, Bogenschutz-Godwin MJ. The synergy principle at work with plants, pathogens, insects, herbivores and humans. In : Natural products from plants. Boca Raton : CRC Taylor and Francis, 2006 : 475–501. [Google Scholar]
  10. Davies S, Serradell N, Bolos J, Bayes M. Plerixafor hydrochloride. Drugs Future 2007 ; 32 : 123–136. [CrossRef] [Google Scholar]
  11. CHMP assesment for Mozobil. European Medicines Agency 2009 : procedure No. EMEA/H/C/001030. [Google Scholar]
  12. Cruciani G, Milletti F, Storchi L, Sforna G, et al. In silico pKa prediction and ADME profiling. Chem Biodivers 2009 ; 6 : 1812–1821. [CrossRef] [PubMed] [Google Scholar]
  13. McGovern S, Caselli E, Grigorieff N, Schoichet B. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 2002 ; 45 : 1712–1722. [CrossRef] [PubMed] [Google Scholar]
  14. Van de Waterbeemd H, Lennernäs H, Artursson P. High throughput measurement of logD and pKa. In : Methods and principles in medicinal chemistry. Weinheim : Wiley, 2003 : 21–45. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.