Free Access
Med Sci (Paris)
Volume 31, Number 6-7, Juin–Juillet 2015
Page(s) 654 - 659
Section M/S Revues
Published online 07 July 2015
  1. Kirsch J., Siltanen C., Zhou Q, et al. Biosensor technology: recent advances in threat agent detection and medicine. Chem Soc Rev 2013 ; 42 : 8733–8768. [CrossRef] [PubMed] [Google Scholar]
  2. Petschnigg J, Moe OW, Stagljar I. Using yeast as a model to study membrane proteins. Curr Opin Nephrol Hypertens 2011 ; 4 : 425–432. [CrossRef] [Google Scholar]
  3. Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001 ; 305 : 567–580. [CrossRef] [PubMed] [Google Scholar]
  4. Schlegel S, Hjelm A, Baumgarten T, et al. Bacterial-based membrane protein production. Biochim Biophys Acta 2014 ; 1843 : 1739–1749. [CrossRef] [PubMed] [Google Scholar]
  5. Renthal R. Helix insertion into bilayers and the evolution of membrane proteins. Cell Mol Life Sci 2010 ; 67 : 1077–1088. [CrossRef] [PubMed] [Google Scholar]
  6. Miroux B, Walker JE. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 1996 ; 260 : 289–298. [CrossRef] [PubMed] [Google Scholar]
  7. Valderrama-Rincon JD, Fisher AC, Merritt JH, et al. An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat Chem Biol 2012 ; 8 : 434–436. [CrossRef] [PubMed] [Google Scholar]
  8. Torrent M, Llompart B, Lasserre-Ramassamy S, et al. Eukaryotic protein production in designed storage organelles. BMC Biol 2009 ; 7 : 5. [CrossRef] [PubMed] [Google Scholar]
  9. Dvir H, Choe S. Bacterial expression of a eukaryotic membrane protein in fusion to various mistic orthologs. Protein Expr Purif 2009 ; 68 : 28–33. [CrossRef] [PubMed] [Google Scholar]
  10. Isaksson L, Enberg J, Neutze R, et al. Expression screening of membrane proteins with cell-free protein synthesis. Protein Expr Purif 2012 ; 82 : 218–225. [CrossRef] [PubMed] [Google Scholar]
  11. Deniaud A, Liguori L, Blesneac I, et al. Crystallization of the membrane protein hVDAC1 produced in cell-free system. Biochim Biophys Acta 2010 ; 1798 : 1540–1546. [CrossRef] [PubMed] [Google Scholar]
  12. Klammt C, Schwarz D, Fendler K, et al. Evaluation of detergents for the soluble expression of α-helical and β-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS J 2005 ; 272 : 6024–6038. [CrossRef] [PubMed] [Google Scholar]
  13. Wada T, Shimono K, Kikukawa T, et al. Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. J Mol Biol 2011 ; 411 : 986–998. [CrossRef] [PubMed] [Google Scholar]
  14. Liguori L, Marques B, Villegas-Mendez A, et al. Liposomes-mediated delivery of pro-apoptotic therapeutic membrane proteins. J Control Release 2008 ; 126 : 217–227. [CrossRef] [PubMed] [Google Scholar]
  15. Lenormand JL. Formation of proteoliposomes containing membrane proteins by means of an acellular protein synthesis system. Patent US20100189774, 2008. [Google Scholar]
  16. Sackmann E. Supported membranes: scientific and practical applications. Science 1996 ; 271 : 43–48. [CrossRef] [PubMed] [Google Scholar]
  17. Wang Z, Wilkop T, Han JH, et al. Development of air-stable, supported membrane arrays with photolithography for study of phosphoinositide-protein interactions using surface plasmon resonance imaging. Anal Chem 2008 ; 80 : 6397–6404. [CrossRef] [PubMed] [Google Scholar]
  18. Liu Y., Cheng Q. Detection of membrane-binding proteins by surface plasmon resonance with an all-aqueous amplification scheme. Anal Chem 2012 ; 84 : 3179–3186. [CrossRef] [PubMed] [Google Scholar]
  19. Case GD, Worley JF. Capteur à membrane mince comprenant un interrupteur biochimique. Brevet WO1993010212 A1, 1992. [Google Scholar]
  20. Terrettaz S, Follonier S, Makohliso S, Vogel H. A synthetic membrane protein in tethered lipid bilayers for immunosensing in whole blood. J Struct Biol 2009 ; 168 : 177–182. [CrossRef] [PubMed] [Google Scholar]
  21. Bieri C, Ernst OP, Heyse S, et al. Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation. Nat Biotech 1999 ; 17 : 1105–1108. [CrossRef] [Google Scholar]
  22. Saeedi P, Mohammadian Moosaabadi J, Sina Sebtahmadi S, et al. Potential applications of bacteriorhodopsin mutants. Bioengineered 2012 ; 3 : 326–328. [CrossRef] [PubMed] [Google Scholar]
  23. Preston GM, Piazza Carroll T, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 1992 ; 256 : 385–387. [CrossRef] [PubMed] [Google Scholar]
  24. Murata K, Mitsuoka K, Hirai T, et al. Structural determinants of water permeation through aquaporin-1. Nature 2000 ; 407 : 599–605. [CrossRef] [PubMed] [Google Scholar]
  25. Sui H, Han BG, Lee JK, et al. Structural basis of water-specific transport through the AQP1 water channel. Nature 2001 ; 414 : 872–878. [CrossRef] [PubMed] [Google Scholar]
  26. Tang C, Qiu C, Zhao Y, et al. Membranes composites en film mince à base d’aquaporine. Brevet WO2013043118 A1, 2012. [Google Scholar]
  27. Raccah D, Sulmont V, Reznik Y, et al. Incremental value of continuous glucose monitoring when starting pump therapy in patients with poorly controlled type 1 diabetes. Diabetes Care 2009 ; 32 : 2245–2249. [CrossRef] [PubMed] [Google Scholar]
  28. Gravelle S, Joly L, Detcheverry F, et al. Perméabilité optimale des aquaporines : une histoire de forme ? Med Sci (Paris) 2015 ; 31 : 174–179. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.