Free Access
Issue |
Med Sci (Paris)
Volume 28, Number 8-9, Août–Septembre 2012
|
|
---|---|---|
Page(s) | 740 - 745 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2012288016 | |
Published online | 22 August 2012 |
- Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007 ; 20 : 133–163. [Google Scholar]
- Pappas PG, Kauffman CA, Andes D, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious diseases society of America. Clin Infect Dis 2009 ; 48 : 503–535. [Google Scholar]
- Kulberg B, Filler S. Candidemia. In : Calderone RA, ed. Candida and candidiasis. Washington : ASM Press, 2002 : 327–340. [Google Scholar]
- Baillie GS, Douglas LJ. Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother 1998 ; 42 : 1900–1905. [PubMed] [Google Scholar]
- Hawser SP, Douglas LJ. Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 1995 ; 39 : 2128–2131. [CrossRef] [PubMed] [Google Scholar]
- Kuhn DM, George T, Chandra J, et al. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother 2002 ; 46 : 1773–1780. [CrossRef] [PubMed] [Google Scholar]
- Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiol Rev 2002 ; 15 : 167–193. [Google Scholar]
- Baillie GS, Douglas LJ. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother 2000 ; 46 : 397–403. [CrossRef] [PubMed] [Google Scholar]
- Chandra J, Kuhn DM, Mukherjee PK, et al. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 2001 ; 183 : 5385–5394. [CrossRef] [PubMed] [Google Scholar]
- Pfaller MA, Messer SA, Moet GJ, et al. Candida bloodstream infections: comparison of species distribution and resistance to echinocandin and azole antifungal agents in intensive care unit (ICU) and non-ICU settings in the Sentry antimicrobial surveillance program (2008–2009). Int J Antimicrob Agents 2011 ; 38 : 65–69. [CrossRef] [PubMed] [Google Scholar]
- Gristina AG, Hobgood CD, Webb LX, Myrvik QN. Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials 1987 ; 8 : 423–426. [CrossRef] [PubMed] [Google Scholar]
- Cannon RD, Chaffin WL. Oral colonization by Candida albicans. Crit Rev Oral Biol Med 1999 ; 10 : 359–383. [CrossRef] [PubMed] [Google Scholar]
- Ramage G, Vandewalle K, Wickes BL, Lopez-Ribot JL. Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol 2001 ; 18 : 163–170. [PubMed] [Google Scholar]
- Seneviratne CJ, Jin L, Samaranayake LP. Biofilm lifestyle of Candida: a mini review. Oral Dis 2008 ; 14 : 582–590. [CrossRef] [PubMed] [Google Scholar]
- Uppuluri P, Chaturvedi AK, Srinivasan A, et al. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 2010 ; 6 : e1000828. [CrossRef] [PubMed] [Google Scholar]
- Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 1994 ; 62 : 915–921. [PubMed] [Google Scholar]
- Douglas LJ. Candida biofilms and their role in infection. Trends Microbiol 2003 ; 11 : 30–36. [CrossRef] [PubMed] [Google Scholar]
- Mukherjee PK, Chandra J. Candida biofilm resistance. Drug Resist Updat 2004 ; 7 : 301–309. [CrossRef] [PubMed] [Google Scholar]
- Gallien S, Sordet F, Enache-Angoulvant A. Treatment of catheter-related candidemia. J Mycol Med 2007 ; 17 : 42–49. [CrossRef] [Google Scholar]
- Castagnola E, Marazzi MG, Tacchella A, Giacchino R. Broviac catheter-related candidemia. Pediatr Infect Dis J 2005 ; 24 : 747. [CrossRef] [Google Scholar]
- Buckler BS, Sams RN, Goei VL, et al. Treatment of central venous catheter fungal infection using liposomal amphotericin-B lock therapy. Pediatr Infect Dis J 2008 ; 27 : 762–764. [CrossRef] [PubMed] [Google Scholar]
- Lepape A. Y a-t-il des spécificités dans la prise en charge des infections liées aux cathéters suivant la microbiologie ? Ann Fr Anesth Reanim 2005 ; 24 : 298–301. [CrossRef] [PubMed] [Google Scholar]
- Carratala J. The antibiotic-lock technique for therapy of ‘highly needed’ infected catheters. Clin Microbiol Infect 2002 ; 8 : 282–289. [CrossRef] [PubMed] [Google Scholar]
- Donlan RM. Biofilms on central venous catheters: is eradication possible? Curr Top Microbiol Immunol 2008 ; 322 : 133–161. [CrossRef] [PubMed] [Google Scholar]
- Tournu H, Van Dijck P. Candida biofilms, the host: models, new concepts for eradication. Int J Microbiol 2012 ; 2012 : 845352. [PubMed] [Google Scholar]
- Ko KS, Lee JY, Song JH, Peck KR. In vitro evaluation of antibiotic lock technique for the treatment of Candida albicans, C. glabrata, and C. tropicalis biofilms. J Korean Med Sci 2010 ; 25 : 1722–1726. [CrossRef] [PubMed] [Google Scholar]
- Öncü S. In vitro effectiveness of antifungal lock solutions on catheters infected with Candida species. J Infect Chemother 2011 ; 17 : 634–639. [CrossRef] [PubMed] [Google Scholar]
- Schinabeck MK, Long LA, Hossain MA, et al. Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy. Antimicrob Agents Chemother 2004 ; 48 : 1727–1732. [CrossRef] [PubMed] [Google Scholar]
- Shuford JA, Rouse MS, Piper KE, et al. Evaluation of caspofungin and amphotericin B deoxycholate against Candida albicans biofilms in an experimental intravascular catheter infection model. J Infect Dis 2006 ; 194 : 710–713. [CrossRef] [PubMed] [Google Scholar]
- Mukherjee PK, Long L, Kim HG, Ghannoum MA. Amphotericin B lipid complex is efficacious in the treatment of Candida albicans biofilms using a model of catheter-associated Candida biofilms. Int J Antimicrob Agents 2009 ; 33 : 149–153. [CrossRef] [PubMed] [Google Scholar]
- Angel-Moreno A, Boronat M, Bolanos M, et al. Candida glabrata fungemia cured by antibiotic-lock therapy: case report and short review. J Infect 2005 ; 51 : e85–e87. [CrossRef] [PubMed] [Google Scholar]
- Seidler M, Salvenmoser S, Muller FM. In vitro effects of micafungin against Candida biofilms on polystyrene and central venous catheter sections. Int J Antimicrob Agents 2006 ; 28 : 568–573. [CrossRef] [PubMed] [Google Scholar]
- Cateau E, Berjeaud JM, Imbert C. Possible role of azole and echinocandin lock solutions in the control of Candida biofilms associated with silicone. Int J Antimicrob Agents 2011 ; 37 : 380–384. [CrossRef] [PubMed] [Google Scholar]
- Hawser SP, Islam K. Binding of Candida albicans to immobilized amino acids and bovine serum albumin. Infect Immun 1998 ; 66 : 140–144. [PubMed] [Google Scholar]
- Melo AS, Colombo AL, Arthington-Skaggs BA. Paradoxical growth effect of caspofungin observed on biofilms and planktonic cells of five different Candida species. Antimicrob Agents Chemother 2007 ; 51 : 3081–3088. [CrossRef] [PubMed] [Google Scholar]
- Pfaller MA, Messer SA, Boyken L, et al. In vitro activities of voriconazole, posaconazole, and fluconazole against 4, 169 clinical isolates of Candida spp. and Cryptococcus neoformans collected during 2001 and 2002 in the Artemis global antifungal surveillance program. Diagn Microbiol Infect Dis 2004 ; 48 : 201–205. [Google Scholar]
- Lebeaux D, Ghigo JM. Infections associées aux biofilms : quelles perspectives thérapeutiques issues de la recherche fondamentale ? Med Sci (Paris) 2012 ; 28 : 727–739. [CrossRef] [EDP Sciences] [lavoisier] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.