Free Access
Issue |
Med Sci (Paris)
Volume 28, Number 8-9, Août–Septembre 2012
|
|
---|---|---|
Page(s) | 727 - 739 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2012288015 | |
Published online | 22 August 2012 |
- Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am 1978 ; 238 : 86–95. [CrossRef] [PubMed] [Google Scholar]
- Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol 2009 ; 11 : 1034–1043. [Google Scholar]
- McDougald D, Rice SA, Barraud N, et al. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 2011 ; 10 : 39–50. [CrossRef] [PubMed] [Google Scholar]
- Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C. Biofilm formation in plant-microbe associations. Curr Opin Microbiol 2004 ; 7 : 602–609. [CrossRef] [PubMed] [Google Scholar]
- Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999 ; 284 : 1318–1322. [CrossRef] [PubMed] [Google Scholar]
- Kilb B, Lange B, Schaule G, et al. Contamination of drinking water by coliforms from biofilms grown on rubber-coated valves. Int J Hyg Environ Health 2003 ; 206 : 563–573. [CrossRef] [PubMed] [Google Scholar]
- Korea CG, Ghigo JM, Beloin C. The sweet connection: solving the riddle of multiple sugar-binding fimbrial adhesins in Escherichia coli. Multiple E. coli fimbriae form a versatile arsenal of sugar-binding lectins potentially involved in surface-colonisation and tissue tropism. Bioessays 2011 ; 33 : 300–311. [CrossRef] [PubMed] [Google Scholar]
- Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010 ; 8 : 623–633. [CrossRef] [PubMed] [Google Scholar]
- Peters BM, Jabra-Rizk MA, O’May GA, et al. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev 2012 ; 25 : 193–213. [Google Scholar]
- Filloux A, Vallet I. Biofilm : mise en place et organisation d’une communauté bactérienne. Med Sci (Paris) 2003 ; 19 : 77–83. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Whiteley M, Bangera MG, Bumgarner RE, et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001 ; 413 : 860–864. [CrossRef] [PubMed] [Google Scholar]
- Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol 2008 ; 6 : 199–210. [Google Scholar]
- Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 2007 ; 5 : 48–56. [CrossRef] [PubMed] [Google Scholar]
- Boles BR, Thoendel M, Singh PK. Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci USA 2004 ; 101 : 16630–16635. [CrossRef] [Google Scholar]
- Landini P, Antoniani D, Burgess JG, Nijland R. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol 2010 ; 86 : 813–823. [CrossRef] [PubMed] [Google Scholar]
- Tribelli PM, Di Martino C, Lopez NI, Raiger Iustman LJ. Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis. Biodegradation 2012 (sous presse). [Google Scholar]
- Rendueles O, Ghigo JM. Multi-species biofilms: How to avoid unfriendly neighbors. FEMS Microbiol Rev 2012 (sous presse). [Google Scholar]
- Ghigo JM. Natural conjugative plasmids induce bacterial biofilm development. Nature 2001 ; 412 : 442–445. [CrossRef] [PubMed] [Google Scholar]
- Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2003 ; 2 : 114–122. [CrossRef] [PubMed] [Google Scholar]
- Williams I, Venables WA, Lloyd D, et al. The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus. Microbiology 1997 ; 143 : 2407–2413. [CrossRef] [PubMed] [Google Scholar]
- Mah TF, Pitts B, Pellock B, et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003 ; 426 : 306–310. [CrossRef] [PubMed] [Google Scholar]
- Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 2003 ; 57 : 677–701. [CrossRef] [PubMed] [Google Scholar]
- Marrie TJ, Nelligan J, Costerton JW. A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation 1982 ; 66 : 1339–1341. [CrossRef] [PubMed] [Google Scholar]
- Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev 2006 ; 35 : 780–789. [CrossRef] [PubMed] [Google Scholar]
- Rodrigues LR. Inhibition of bacterial adhesion on medical devices. Adv Exp Med Biol 2011 ; 715 : 351–367. [CrossRef] [PubMed] [Google Scholar]
- Baddour LM, Epstein AE, Erickson CC, et al. Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation 2010 ; 121 : 458–477. [CrossRef] [PubMed] [Google Scholar]
- Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med 2004 ; 350 : 1422–1429. [CrossRef] [PubMed] [Google Scholar]
- Habib G, Hoen B, Tornos P, et al. Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): the task force on the prevention, diagnosis, and treatment of infective endocarditis of the european society of cardiology (ESC). Endorsed by the european society of clinical microbiology and infectious diseases (ESCMID) and the international society of chemotherapy (ISC) for infection and cancer. Eur Heart J 2009 ; 30 : 2369–2413. [CrossRef] [PubMed] [Google Scholar]
- Mermel LA, Allon M, Bouza E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the infectious diseases society of America. Clin Infect Dis 2009 ; 49 : 1–45. [CrossRef] [PubMed] [Google Scholar]
- Durack DT. Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. J Pathol 1975 ; 115 : 81–89. [CrossRef] [PubMed] [Google Scholar]
- Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 2002 ; 15 : 194–222. [CrossRef] [PubMed] [Google Scholar]
- Singh PK, Schaefer AL, Parsek MR, et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 2000 ; 407 : 762–764. [CrossRef] [PubMed] [Google Scholar]
- Justice SS, Hunstad DA, Seed PC, Hultgren SJ. Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proc Natl Acad Sci USA 2006 ; 103 : 19884–19889. [CrossRef] [Google Scholar]
- James GA, Swogger E, Wolcott R, et al. Biofilms in chronic wounds. Wound Repair and Regeneration 2008 ; 16 : 37–44. [CrossRef] [Google Scholar]
- Schierle CF, De la Garza M, Mustoe TA, Galiano RD. Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair Regen 2009 ; 17 : 354–359. [CrossRef] [PubMed] [Google Scholar]
- Hall-Stoodley L, Hu FZ, Gieseke A, et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 2006 ; 296 : 202–211. [CrossRef] [PubMed] [Google Scholar]
- Lynch AS, Robertson GT. Bacterial and fungal biofilm infections. Annu Rev Med 2008 ; 59 : 415–428. [CrossRef] [PubMed] [Google Scholar]
- O’Grady NP, Alexander M, Burns LA, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis 2011 ; 52 : e162–e193. [CrossRef] [PubMed] [Google Scholar]
- Landry DL, Braden GL, Gobeille SL, et al. Emergence of gentamicin-resistant bacteremia in hemodialysis patients receiving gentamicin lock catheter prophylaxis. Clin J Am Soc Nephrol 2010 ; 5 : 1799–1804. [CrossRef] [PubMed] [Google Scholar]
- Oliveira C, Nasr A, Brindle M, Wales PW. Ethanol locks to prevent catheter-related bloodstream infections in parenteral nutrition: a meta-analysis. Pediatrics 2012 ; 129 : 318–329. [CrossRef] [PubMed] [Google Scholar]
- Raad II, Fang X, Keutgen XM, et al. The role of chelators in preventing biofilm formation and catheter-related bloodstream infections. Curr Opin Infect Dis 2008 ; 21 : 385–392. [CrossRef] [PubMed] [Google Scholar]
- Fey PD. Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections?. Curr Opin Microbiol 2010 ; 13 : 610–615. [CrossRef] [PubMed] [Google Scholar]
- Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 2008 ; 68 : 223–240. [CrossRef] [PubMed] [Google Scholar]
- Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity prevents bacterial biofilm development. Nature 2002 ; 417 : 552–555. [CrossRef] [PubMed] [Google Scholar]
- Yang L, Liu Y, et al. Combating biofilms. FEMS Immunol Med Microbiol 2011. [Google Scholar]
- Tiller JC, Liao CJ, Lewis K, Klibanov AM. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 2001 ; 98 : 5981–5985. [Google Scholar]
- Hentzer M, Givskov M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 2003 ; 112 : 1300–1307. [PubMed] [Google Scholar]
- Hoffmann N, Lee B, Hentzer M, et al. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr-/- mice. Antimicrob Agents Chemother 2007 ; 51 : 3677–3687. [CrossRef] [PubMed] [Google Scholar]
- Saiman L, Marshall BC, Mayer-Hamblett N, et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 2003 ; 290 : 1749–1756. [CrossRef] [PubMed] [Google Scholar]
- Feola DJ, Garvy BA, Cory TJ, et al. Azithromycin alters macrophage phenotype and pulmonary compartmentalization during lung infection with Pseudomonas. Antimicrob Agents Chemother 2010 ; 54 : 2437–2447. [CrossRef] [PubMed] [Google Scholar]
- Cirioni O, Giacometti A, Ghiselli R, et al. RNAIII-inhibiting peptide significantly reduces bacterial load and enhances the effect of antibiotics in the treatment of central venous catheter-associated Staphylococcus aureus infections. J Infect Dis 2006 ; 193 : 180–186. [CrossRef] [PubMed] [Google Scholar]
- Antoniani D, Bocci P, Maciag A, et al. Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol 2010 ; 85 : 1095–1104. [CrossRef] [PubMed] [Google Scholar]
- Walz JM, Avelar RL, Longtine KJ, et al. Anti-infective external coating of central venous catheters: a randomized, noninferiority trial comparing 5-fluorouracil with chlorhexidine/silver sulfadiazine in preventing catheter colonization. Crit Care Med 2010 ; 38 : 2095–2102. [CrossRef] [PubMed] [Google Scholar]
- Kohler T, Perron GG, Buckling A, van Delden C. Quorum sensing inhibition selects for virulence, cooperation in Pseudomonas aeruginosa. PLoS Pathog 2010 ; 6 : e1000883. [CrossRef] [PubMed] [Google Scholar]
- Davies DG, Marques CN. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 2009 ; 191 : 1393–1403. [CrossRef] [PubMed] [Google Scholar]
- Boles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 2008 ; 4 : e1000052. [CrossRef] [PubMed] [Google Scholar]
- Kolodkin-Gal I, Romero D, Cao S, et al. D-amino acids trigger biofilm disassembly. Science 2010 ; 328 : 627–629. [CrossRef] [PubMed] [Google Scholar]
- O’Toole GA. Microbiology: Jekyll or hide?. Nature 2004 ; 432 : 680–681. [CrossRef] [PubMed] [Google Scholar]
- Kim JS, Heo P, Yang TJ, et al. Selective killing of bacterial persisters by a single chemical compound without affecting normal antibiotic-sensitive cells. Antimicrob Agents Chemother 2011 ; 55 : 5380–5383. [CrossRef] [PubMed] [Google Scholar]
- Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 2011 ; 473 : 216–220. [CrossRef] [PubMed] [Google Scholar]
- Pflumm M. Caught on film. Nat Med 2011 ; 17 : 650–653. [CrossRef] [PubMed] [Google Scholar]
- Ebert T, Smith S, Pancari G, et al. Development of a rat central venous catheter model for evaluation of vaccines to prevent Staphylococcus epidermidis and Staphylococcus aureus early biofilms. Hum Vaccin 2011 ; 7 : 630–638. [CrossRef] [PubMed] [Google Scholar]
- Brady RA, O’May GA, Leid JG, et al. Resolution of Staphylococcus aureus biofilm infection using vaccination and antibiotic treatment. Infect Immun 2011 ; 79 : 1797–1803. [CrossRef] [PubMed] [Google Scholar]
- Filloux A, Ventre I. Des senseurs pour contrôler le style de vie bactérien : le choix entre infection chronique ou aiguë. Med Sci (Paris) 2006 ; 22 : 811–814. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Kojic EM, Darouiche RO. Candida infections of medical devices. Clin Microbiol Rev 2004 ; 17 : 255–267. [CrossRef] [PubMed] [Google Scholar]
- Ramage G, Mowat E, Jones B, et al. Our current understanding of fungal biofilms. Crit Rev Microbiol 2009 ; 35 : 340–355. [CrossRef] [PubMed] [Google Scholar]
- Muller FM, Seidler M, Beauvais A., Aspergillus fumigatus biofilms in the clinical setting. Med Mycol 2011 ; 49 (suppl 1) : S96–100. [CrossRef] [PubMed] [Google Scholar]
- Beauvais A, Schmidt C, Guadagnini S, et al. An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell Microbiol 2007 ; 9 : 1588–1600. [CrossRef] [PubMed] [Google Scholar]
- Loussert C, Schmitt C, Prevost MC, et al. In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol 2010 ; 12 : 405–410. [CrossRef] [PubMed] [Google Scholar]
- Spoering AL, Lewis K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 2001 ; 183 : 6746–6751. [CrossRef] [PubMed] [Google Scholar]
- Cateau E, Rodier MH, Imbert C. Candidoses associées aux cathéters : quelle place pour les verrous antifongiques ?. Med Sci (Paris) 2012 ; 28 : 740–745. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Goodman SD, Obergfell KP, Jurcisek JA, et al. Biofilms can be dispersed by focusing the immune system on a common family of bacterial nucleoid-associated proteins. Mucosal Immunol 2011 ; 4 : 625–637. [CrossRef] [PubMed] [Google Scholar]
- Glonti T, Chanishvili N, Taylor PW. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J Appl Microbiol 2010 ; 108 : 695–702. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.