Free Access
Issue
Med Sci (Paris)
Volume 27, Number 1, Janvier 2011
Page(s) 55 - 61
Section M/S revues
DOI https://doi.org/10.1051/medsci/201127155
Published online 10 February 2011
  1. Klahr S, Schreiner G, Ichikawa I. The progression of renal disease. N Engl J Med 1988 ; 318 : 1657-1666. [CrossRef] [PubMed] [Google Scholar]
  2. Nath KA. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 1992 ; 20 : 1-17. [PubMed] [Google Scholar]
  3. Meguid El Nahas A, Bello AK. Chronic kidney disease: the global challenge. Lancet 2005 ; 365 : 331-340. [PubMed] [Google Scholar]
  4. Sean Eardley K, Cockwell P. Macrophages and progressive tubulointerstitial disease. Kidney Int 2005 ; 68 : 437-455. [CrossRef] [PubMed] [Google Scholar]
  5. Eddy AA. Progression in chronic kidney disease. Adv Chronic Kidney Dis 2005 ; 12 : 353-365. [CrossRef] [PubMed] [Google Scholar]
  6. Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest 2008 ; 118 : 3522-3530. [CrossRef] [PubMed] [Google Scholar]
  7. Wang Y, Wang YP, Zheng G, et al. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int 2007 ; 72 : 290-299. [CrossRef] [PubMed] [Google Scholar]
  8. Velazquez P, Dustin ML, Nelson PJ. Renal dendritic cells: an update. Nephron Exp Nephrol 2009 ; 111 : e67-e71. [CrossRef] [PubMed] [Google Scholar]
  9. Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE, et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J Clin Invest 2009 ; 119 : 1286-1297. [CrossRef] [PubMed] [Google Scholar]
  10. Holdsworth SR, Summers SA. Role of mast cells in progressive renal diseases. J Am Soc Nephrol 2008 ; 19 : 2254-2261. [CrossRef] [PubMed] [Google Scholar]
  11. Grande MT, Lopez-Novoa JM. Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat Rev Nephrol 2009 ; 5 : 319-328. [CrossRef] [PubMed] [Google Scholar]
  12. Tesch GH. MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J Physiol Renal Physiol 2008 ; 294 : F697-F701. [CrossRef] [PubMed] [Google Scholar]
  13. Giunti S, Tesch GH, Pinach S, et al. Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes and in vitro in human mesangial cells. Diabetologia 2008 ; 51 : 198-207. [CrossRef] [PubMed] [Google Scholar]
  14. Eitner F, Bucher E, van Roeyen C, et al. PDGF-C is a proinflammatory cytokine that mediates renal interstitial fibrosis. J Am Soc Nephrol 2008 ; 19 : 281-289. [CrossRef] [PubMed] [Google Scholar]
  15. Strutz F, Zeisberg M, Ziyadeh FN, et al. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int 2002 ; 61 : 1714-1728. [CrossRef] [PubMed] [Google Scholar]
  16. Lautrette A, Li S, Alili R, et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med 2005 ; 11 : 867-874. [CrossRef] [PubMed] [Google Scholar]
  17. Liu Y, Yang J. Hepatocyte growth factor: new arsenal in the fights against renal fibrosis? Kidney Int 2006 ; 70 : 238-240. [CrossRef] [PubMed] [Google Scholar]
  18. Liu Y. Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am J Physiol Renal Physiol 2004 ; 287 : F7-F16. [CrossRef] [PubMed] [Google Scholar]
  19. Schievenbusch S, Strack I, Scheffler M, et al. Profiling of anti-fibrotic signaling by hepatocyte growth factor in renal fibroblasts. Biochem Biophys Res Commun 2009 ; 385 : 55-61. [CrossRef] [PubMed] [Google Scholar]
  20. Giannopoulou M, Dai C, Tan X, et al. Hepatocyte growth factor exerts its anti-inflammatory action by disrupting nuclear factor-kappaB signaling. Am J Pathol 2008 ; 173 : 30-41. [CrossRef] [PubMed] [Google Scholar]
  21. Zeisberg M, Hanai J, Sugimoto H, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 2003 ; 9 : 964-968. [CrossRef] [PubMed] [Google Scholar]
  22. Zeisberg M, Kalluri R. Reversal of experimental renal fibrosis by BMP7 provides insights into novel therapeutic strategies for chronic kidney disease. Pediatr Nephrol 2008 ; 23 : 1395-1398. [CrossRef] [PubMed] [Google Scholar]
  23. Ruster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol 2006 ; 17 : 2985-2991. [CrossRef] [PubMed] [Google Scholar]
  24. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008 ; 214 : 199-210. [CrossRef] [PubMed] [Google Scholar]
  25. Mezzano SA, Ruiz-Ortega M, Egido J. Angiotensin II and renal fibrosis. Hypertension 2001 ; 38 : 635-638. [CrossRef] [PubMed] [Google Scholar]
  26. Carvajal G, Rodriguez-Vita J, Rodrigues-Diez R, et al. Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation. Kidney Int 2008 ; 74 : 585-595. [CrossRef] [PubMed] [Google Scholar]
  27. Bascands JL, Schanstra JP, Couture R, et al. Les récepteurs de la bradykinine : de nouveaux rôles physiopathologiques. Med Sci (Paris) 2003 ; 19 : 1093-1100. [PubMed] [Google Scholar]
  28. Schanstra JP, Neau E, Drogoz P, et al. In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest 2002 ; 110 : 371-379. [PubMed] [Google Scholar]
  29. Klein J, Gonzalez J, Decramer S, et al. Blockade of the kinin B1 receptor ameloriates glomerulonephritis. J Am Soc Nephrol 2010 ; 21 : 1157-1164. [CrossRef] [PubMed] [Google Scholar]
  30. Klein J, Gonzalez J, Duchene J, et al. Delayed blockade of the kinin B1 receptor reduces renal inflammation and fibrosis in obstructive nephropathy. FASEB J 2009 ; 23 : 134-142. [CrossRef] [PubMed] [Google Scholar]
  31. Pradere JP, Gonzalez J, Klein J, et al. Lysophosphatidic acid and renal fibrosis. Biochim Biophys Acta 2008 ; 1781 : 582-587. [PubMed] [Google Scholar]
  32. Pradere JP, Klein J, Gres S, et al. LPA1 receptor activation promotes renal interstitial fibrosis. J Am Soc Nephrol 2007 ; 18 : 3110-3118. [CrossRef] [PubMed] [Google Scholar]
  33. Hirschberg R, Wang S. Proteinuria and growth factors in the development of tubulointerstitial injury and scarring in kidney disease. Curr Opin Nephrol Hypertens 2005 ; 14 : 43-52. [CrossRef] [PubMed] [Google Scholar]
  34. Strutz FM. EMT and proteinuria as progression factors. Kidney Int 2009 ; 75 : 475-481. [CrossRef] [PubMed] [Google Scholar]
  35. Fine LG, Norman JT. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 2008 ; 74 : 867-872. [CrossRef] [PubMed] [Google Scholar]
  36. Higgins DF, Kimura K, Iwano M, et al. Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle 2008 ; 7 : 1128-1132. [CrossRef] [PubMed] [Google Scholar]
  37. Fioretto P, Sutherland DE, Najafian B, et al. Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int 2006 ; 69 : 907-912. [CrossRef] [PubMed] [Google Scholar]
  38. Chatziantoniou C, Dussaule JC. Is kidney injury a reversible process? Curr Opin Nephrol Hypertens 2008 ; 17 : 76-81. [CrossRef] [PubMed] [Google Scholar]
  39. Fioretto P, Steffes MW, Sutherland DE, et al. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 1998 ; 339 : 69-75. [CrossRef] [PubMed] [Google Scholar]
  40. Ronco P, Chatziantoniou C. Matrix metalloproteinases and matrix receptors in progression and reversal of kidney disease: therapeutic perspectives. Kidney Int 2008 ; 74 : 873-878. [CrossRef] [PubMed] [Google Scholar]
  41. Servais A, Meas-Yedid V, Morelon E, et al. Apports récents des techniques de quantification de la fibrose pour l’examen anatomo-pathologique en transplantation rénale. Med Sci (Paris) 2009 ; 25 : 945-950. [PubMed] [Google Scholar]
  42. Flamant M, Dussaule JC, Ardaillou R. Les effets profibrosants des peptides vasoactifs dans le rein et les vaisseaux passent-ils par la transactivation du facteur de croissance épidermique (EGF)? Med Sci (Paris) 2005 ; 21 : 461-463. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.