Accès gratuit
Numéro
Med Sci (Paris)
Volume 27, Numéro 1, Janvier 2011
Page(s) 55 - 61
Section M/S revues
DOI https://doi.org/10.1051/medsci/201127155
Publié en ligne 10 février 2011
  1. Klahr S, Schreiner G, Ichikawa I. The progression of renal disease. N Engl J Med 1988 ; 318 : 1657-1666. [CrossRef] [PubMed] [Google Scholar]
  2. Nath KA. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 1992 ; 20 : 1-17. [PubMed] [Google Scholar]
  3. Meguid El Nahas A, Bello AK. Chronic kidney disease: the global challenge. Lancet 2005 ; 365 : 331-340. [PubMed] [Google Scholar]
  4. Sean Eardley K, Cockwell P. Macrophages and progressive tubulointerstitial disease. Kidney Int 2005 ; 68 : 437-455. [CrossRef] [PubMed] [Google Scholar]
  5. Eddy AA. Progression in chronic kidney disease. Adv Chronic Kidney Dis 2005 ; 12 : 353-365. [CrossRef] [PubMed] [Google Scholar]
  6. Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest 2008 ; 118 : 3522-3530. [CrossRef] [PubMed] [Google Scholar]
  7. Wang Y, Wang YP, Zheng G, et al. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int 2007 ; 72 : 290-299. [CrossRef] [PubMed] [Google Scholar]
  8. Velazquez P, Dustin ML, Nelson PJ. Renal dendritic cells: an update. Nephron Exp Nephrol 2009 ; 111 : e67-e71. [CrossRef] [PubMed] [Google Scholar]
  9. Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE, et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J Clin Invest 2009 ; 119 : 1286-1297. [CrossRef] [PubMed] [Google Scholar]
  10. Holdsworth SR, Summers SA. Role of mast cells in progressive renal diseases. J Am Soc Nephrol 2008 ; 19 : 2254-2261. [CrossRef] [PubMed] [Google Scholar]
  11. Grande MT, Lopez-Novoa JM. Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat Rev Nephrol 2009 ; 5 : 319-328. [CrossRef] [PubMed] [Google Scholar]
  12. Tesch GH. MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J Physiol Renal Physiol 2008 ; 294 : F697-F701. [CrossRef] [PubMed] [Google Scholar]
  13. Giunti S, Tesch GH, Pinach S, et al. Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes and in vitro in human mesangial cells. Diabetologia 2008 ; 51 : 198-207. [CrossRef] [PubMed] [Google Scholar]
  14. Eitner F, Bucher E, van Roeyen C, et al. PDGF-C is a proinflammatory cytokine that mediates renal interstitial fibrosis. J Am Soc Nephrol 2008 ; 19 : 281-289. [CrossRef] [PubMed] [Google Scholar]
  15. Strutz F, Zeisberg M, Ziyadeh FN, et al. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int 2002 ; 61 : 1714-1728. [CrossRef] [PubMed] [Google Scholar]
  16. Lautrette A, Li S, Alili R, et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med 2005 ; 11 : 867-874. [CrossRef] [PubMed] [Google Scholar]
  17. Liu Y, Yang J. Hepatocyte growth factor: new arsenal in the fights against renal fibrosis? Kidney Int 2006 ; 70 : 238-240. [CrossRef] [PubMed] [Google Scholar]
  18. Liu Y. Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am J Physiol Renal Physiol 2004 ; 287 : F7-F16. [CrossRef] [PubMed] [Google Scholar]
  19. Schievenbusch S, Strack I, Scheffler M, et al. Profiling of anti-fibrotic signaling by hepatocyte growth factor in renal fibroblasts. Biochem Biophys Res Commun 2009 ; 385 : 55-61. [CrossRef] [PubMed] [Google Scholar]
  20. Giannopoulou M, Dai C, Tan X, et al. Hepatocyte growth factor exerts its anti-inflammatory action by disrupting nuclear factor-kappaB signaling. Am J Pathol 2008 ; 173 : 30-41. [CrossRef] [PubMed] [Google Scholar]
  21. Zeisberg M, Hanai J, Sugimoto H, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 2003 ; 9 : 964-968. [CrossRef] [PubMed] [Google Scholar]
  22. Zeisberg M, Kalluri R. Reversal of experimental renal fibrosis by BMP7 provides insights into novel therapeutic strategies for chronic kidney disease. Pediatr Nephrol 2008 ; 23 : 1395-1398. [CrossRef] [PubMed] [Google Scholar]
  23. Ruster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol 2006 ; 17 : 2985-2991. [CrossRef] [PubMed] [Google Scholar]
  24. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008 ; 214 : 199-210. [CrossRef] [PubMed] [Google Scholar]
  25. Mezzano SA, Ruiz-Ortega M, Egido J. Angiotensin II and renal fibrosis. Hypertension 2001 ; 38 : 635-638. [CrossRef] [PubMed] [Google Scholar]
  26. Carvajal G, Rodriguez-Vita J, Rodrigues-Diez R, et al. Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation. Kidney Int 2008 ; 74 : 585-595. [CrossRef] [PubMed] [Google Scholar]
  27. Bascands JL, Schanstra JP, Couture R, et al. Les récepteurs de la bradykinine : de nouveaux rôles physiopathologiques. Med Sci (Paris) 2003 ; 19 : 1093-1100. [PubMed] [Google Scholar]
  28. Schanstra JP, Neau E, Drogoz P, et al. In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest 2002 ; 110 : 371-379. [PubMed] [Google Scholar]
  29. Klein J, Gonzalez J, Decramer S, et al. Blockade of the kinin B1 receptor ameloriates glomerulonephritis. J Am Soc Nephrol 2010 ; 21 : 1157-1164. [CrossRef] [PubMed] [Google Scholar]
  30. Klein J, Gonzalez J, Duchene J, et al. Delayed blockade of the kinin B1 receptor reduces renal inflammation and fibrosis in obstructive nephropathy. FASEB J 2009 ; 23 : 134-142. [CrossRef] [PubMed] [Google Scholar]
  31. Pradere JP, Gonzalez J, Klein J, et al. Lysophosphatidic acid and renal fibrosis. Biochim Biophys Acta 2008 ; 1781 : 582-587. [PubMed] [Google Scholar]
  32. Pradere JP, Klein J, Gres S, et al. LPA1 receptor activation promotes renal interstitial fibrosis. J Am Soc Nephrol 2007 ; 18 : 3110-3118. [CrossRef] [PubMed] [Google Scholar]
  33. Hirschberg R, Wang S. Proteinuria and growth factors in the development of tubulointerstitial injury and scarring in kidney disease. Curr Opin Nephrol Hypertens 2005 ; 14 : 43-52. [CrossRef] [PubMed] [Google Scholar]
  34. Strutz FM. EMT and proteinuria as progression factors. Kidney Int 2009 ; 75 : 475-481. [CrossRef] [PubMed] [Google Scholar]
  35. Fine LG, Norman JT. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 2008 ; 74 : 867-872. [CrossRef] [PubMed] [Google Scholar]
  36. Higgins DF, Kimura K, Iwano M, et al. Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle 2008 ; 7 : 1128-1132. [CrossRef] [PubMed] [Google Scholar]
  37. Fioretto P, Sutherland DE, Najafian B, et al. Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int 2006 ; 69 : 907-912. [CrossRef] [PubMed] [Google Scholar]
  38. Chatziantoniou C, Dussaule JC. Is kidney injury a reversible process? Curr Opin Nephrol Hypertens 2008 ; 17 : 76-81. [CrossRef] [PubMed] [Google Scholar]
  39. Fioretto P, Steffes MW, Sutherland DE, et al. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 1998 ; 339 : 69-75. [CrossRef] [PubMed] [Google Scholar]
  40. Ronco P, Chatziantoniou C. Matrix metalloproteinases and matrix receptors in progression and reversal of kidney disease: therapeutic perspectives. Kidney Int 2008 ; 74 : 873-878. [CrossRef] [PubMed] [Google Scholar]
  41. Servais A, Meas-Yedid V, Morelon E, et al. Apports récents des techniques de quantification de la fibrose pour l’examen anatomo-pathologique en transplantation rénale. Med Sci (Paris) 2009 ; 25 : 945-950. [PubMed] [Google Scholar]
  42. Flamant M, Dussaule JC, Ardaillou R. Les effets profibrosants des peptides vasoactifs dans le rein et les vaisseaux passent-ils par la transactivation du facteur de croissance épidermique (EGF)? Med Sci (Paris) 2005 ; 21 : 461-463. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.