Accès gratuit
Numéro
Med Sci (Paris)
Volume 27, Numéro 1, Janvier 2011
Page(s) 63 - 69
Section M/S revues
DOI https://doi.org/10.1051/medsci/201127163
Publié en ligne 10 février 2011
  1. Petronczki M, Siomos MF, Nasmyth K. Un ménage à quatre : the molecular biology of chromosome segregation in meiosis. Cell 2003 ; 112 : 423-440. [CrossRef] [PubMed] [Google Scholar]
  2. Sturtevant AH. A third group of linked genes in drosophila ampelophila. Science 1913 ; 37 : 990-992. [CrossRef] [PubMed] [Google Scholar]
  3. Morgan TH. Localization of the hereditary material in the germ cells. Proc Natl Acad Sci USA 1915 ; 1 : 420-429. [CrossRef] [Google Scholar]
  4. Creighton HB, McClintock B. A correlation of cytological and genetical crossing-over in zea mays. Proc Natl Acad Sci USA 1931 ; 17 : 492-497. [CrossRef] [Google Scholar]
  5. Baudat F, De Massy B. SPO11 : une activité de coupure de l’ADN indispensable à la méiose. Med Sci (Paris) 2004 ; 20 : 213-218. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Buard J, de Massy B. Playing hide and seek with mammalian meiotic crossover hotspots. Trends Genet 2007 ; 23 : 301-309. [CrossRef] [PubMed] [Google Scholar]
  7. Baudat F, Nicolas A. Clustering of meiotic double-strand breaks on yeast chromosome III. Proc Natl Acad Sci USA 1997 ; 94 : 5213-5218. [CrossRef] [Google Scholar]
  8. Cromie GA, Hyppa RW, Cam HP, et al. A discrete class of intergenic DNA dictates meiotic DNA break hotspots in fission yeast. PLoS Genet 2007 ; 3 : e141. [CrossRef] [PubMed] [Google Scholar]
  9. Ohta K, Shibata T, Nicolas A. Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO J 1994 ; 13 : 5754-5763. [PubMed] [Google Scholar]
  10. Wu T-C, Lichten M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 1994 ; 263 : 515-518. [CrossRef] [PubMed] [Google Scholar]
  11. Hirota K, Steiner WW, Shibata T, Ohta K. Multiple modes of chromatin configuration at natural meiotic recombination hot spots in fission yeast. Eukaryot Cell 2007 ; 6 : 2072-2080. [CrossRef] [PubMed] [Google Scholar]
  12. Yamada T, Mizuno KI, Hirota K, et al. Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J 2004 ; 23 : 1792-1803. [CrossRef] [PubMed] [Google Scholar]
  13. Gerton JL, DeRisi J, Shroff R, et al. Inaugural article: global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2000 ; 97 : 11383-11390. [CrossRef] [Google Scholar]
  14. White MA, Detloff P, Strand M, Petes TD. A promoter deletion reduces the rate of mitotic, but not meiotic, recombination at the HIS4 locus in yeast. Curr Genet 1992 ; 21 : 109-116. [CrossRef] [PubMed] [Google Scholar]
  15. Mieczkowski PA, Dominska M, Buck MJ, et al. Global analysis of the relationship between the binding of the Bas1p transcription factor and meiosis-specific double-strand DNA breaks in Saccharomyces cerevisiae. Mol Cell Biol 2006 ; 26 : 1014-1027. [CrossRef] [PubMed] [Google Scholar]
  16. Abdullah MF, Borts RH. Meiotic recombination frequencies are affected by nutritional states in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2001 ; 98 : 14524-14529. [CrossRef] [Google Scholar]
  17. Hirota K, Mizuno K, Shibata T, Ohta K. Distinct chromatin modulators regulate the formation of accessible and repressive chromatin at the fission yeast recombination hotspot ade6-M26. Mol Biol Cell 2008 ; 19 : 1162-1173. [CrossRef] [PubMed] [Google Scholar]
  18. Steiner WW, Smith GR. Natural meiotic recombination hot spots in the Schizosaccharomyces pombe genome successfully predicted from the simple sequence motif M26. Mol Cell Biol 2005 ; 25 : 9054-9062. [CrossRef] [PubMed] [Google Scholar]
  19. Steiner WW, Steiner EM, Girvin AR, Plewik LE. Novel nucleotide sequence motifs that produce hotspots of meiotic recombination in Schizosaccharomyces pombe. Genetics 2009 ; 182 : 459-469. [CrossRef] [PubMed] [Google Scholar]
  20. Kouzarides T. Chromatin modifications and their function. Cell 2007 ; 128 : 693-705. [CrossRef] [PubMed] [Google Scholar]
  21. Merker JD, Dominska M, Greenwell PW, et al. The histone methylase Set2p and the histone deacetylase Rpd3p repress meiotic recombination at the HIS4 meiotic recombination hotspot in Saccharomyces cerevisiae. DNA Repair (Amst) 2008 ; 7 : 1298-1308. [CrossRef] [PubMed] [Google Scholar]
  22. Mieczkowski PA, Dominska M, Buck MJ, et al. Loss of a histone deacetylase dramatically alters the genomic distribution of Spo11p-catalyzed DNA breaks in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2007 ; 104 : 3955-3960. [CrossRef] [Google Scholar]
  23. Ruthenburg AJ, Allis CD, Wysocka J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 2007 ; 25 : 15-30. [CrossRef] [PubMed] [Google Scholar]
  24. Sollier J, Lin W, Soustelle C, et al. Set1 is required for meiotic S-phase onset, double-strand break formation and middle gene expression. EMBO J 2004 ; 23 : 1957-1967. [CrossRef] [PubMed] [Google Scholar]
  25. Borde V, Robine N, Lin W, et al. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J 2009 ; 28 : 99-111. [CrossRef] [PubMed] [Google Scholar]
  26. Noma K, Grewal SI. Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast. Proc Natl Acad Sci USA 2002 ; 99 (suppl 4) : 16438-16445. [CrossRef] [Google Scholar]
  27. Matise TC, Chen F, Chen W, et al. A second-generation combined linkage physical map of the human genome. Genome Res 2007 ; 17 : 1783-1786. [CrossRef] [PubMed] [Google Scholar]
  28. Shifman S, Bell JT, Copley RR, et al. A high-resolution single nucleotide polymorphism genetic map of the mouse genome. PLoS Biol 2006 ; 4 : e395. [CrossRef] [PubMed] [Google Scholar]
  29. Frazer KA, Ballinger DG, Cox DR, et al. A second generation human haplotype map of over 3.1 millions SNP. Nature 2007 ; 449 : 851-861. [CrossRef] [PubMed] [Google Scholar]
  30. Myers S, Bottolo L, Freeman C, et al. A fine-scale map of recombination rates and hotspots across the human genome. Science 2005 ; 310 : 321-324. [CrossRef] [PubMed] [Google Scholar]
  31. Myers S, Freeman C, Auton A, et al. A common sequence motif associated with recombination hot spots and genome instability in humans. Nat Genet 2008 ; 40 : 1124-1129. [CrossRef] [PubMed] [Google Scholar]
  32. Baudat F, de Massy B. Cis- and trans-acting elements regulate the mouse Psmb9 meiotic recombination hotspot. PLoS Genet 2007 ; 3 : e100. [CrossRef] [PubMed] [Google Scholar]
  33. Coop G, Wen X, Ober C, et al. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 2008 ; 319 : 1395-1398. [CrossRef] [PubMed] [Google Scholar]
  34. Neumann R, Jeffreys AJ. Polymorphism in the activity of human crossover hotspots independent of local DNA sequence variation. Hum Mol Genet 2006 ; 15 : 1401-1411. [CrossRef] [PubMed] [Google Scholar]
  35. Ptak SE, Roeder AD, Stephens M, et al. Absence of the TAP2 human recombination hotspot in chimpanzees. PLoS Biol 2004 ; 2 : E155. [PubMed] [Google Scholar]
  36. Winckler W, Myers SR, Richter DJ, et al. Comparison of fine-scale recombination rates in humans and chimpanzees. Science 2005 ; 308 : 107-111. [CrossRef] [PubMed] [Google Scholar]
  37. Buard J, Barthes P, Grey C, de Massy B. Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO J 2009 ; 28 : 2616-2624. [CrossRef] [PubMed] [Google Scholar]
  38. Grey C, Baudat F, de Massy B. Genome-wide control of the distribution of meiotic recombination. PLoS Biol 2009 ; 7 : e35. [CrossRef] [PubMed] [Google Scholar]
  39. Hayashi K, Yoshida K, Matsui Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 2005 ; 438 : 374-378. [CrossRef] [PubMed] [Google Scholar]
  40. Baudat F, Buard J, Grey C, et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 2010 ; 327 : 836-840. [CrossRef] [PubMed] [Google Scholar]
  41. Myers S, Bowden R, Tumian A, et al. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 2010 ; 327 : 876-879. [CrossRef] [PubMed] [Google Scholar]
  42. Oliver PL, Goodstadt L, Bayes JJ, et al. Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa. PLoS Genet 2009 ; 5 : e1000753. [CrossRef] [PubMed] [Google Scholar]
  43. Jeffreys AJ, Kauppi L, Neumann R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 2001 ; 29 : 217-222. [CrossRef] [PubMed] [Google Scholar]
  44. Baudat F, Buard J, Grey C, de Massy B. Identification d’une protéine-clé pour le contrôle des sites de recombinaison méiotique. Med Sci (Paris) 2010 ; 26 : 468-470. [PubMed] [Google Scholar]
  45. Montpetit A, Chagnon F. La carte d’haplotype du génome humain : une révolution en génétique des maladies à hérédité complexe. Med Sci (Paris) 2006 ; 22 : 1061-1067. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.