Free Access
Med Sci (Paris)
Volume 27, Number 1, Janvier 2011
Page(s) 49 - 54
Section M/S revues
Published online 10 February 2011
  1. Chavanas S, Méchin MC, Takahara H, et al. Comparative analysis of the mouse and human peptidylarginine deiminase gene clusters reveals highly conserved non-coding segments and a new human gene, PADI6. Gene 2004 ; 330 : 19-27. [CrossRef] [PubMed] [Google Scholar]
  2. Wright PW, Bolling LC, Calvert ME, et al. ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev Biol 2003 ; 256 : 73-88. [PubMed] [Google Scholar]
  3. Esposito G, Vitale AM, Leijten FP, et al. Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol Cell Endocrinol 2007 ; 273 : 25-31. [CrossRef] [PubMed] [Google Scholar]
  4. Nachat R, Méchin MC, Takahara H, et al. Peptidylarginine deiminase isoforms 1-3 are expressed in the epidermis and involved in the deimination of K1 and filaggrin. J Invest Dermatol 2005 ; 124 : 384-393. [CrossRef] [PubMed] [Google Scholar]
  5. Kamata Y, Taniguchi A, Yamamoto M, et al. Neutral cysteine protease bleomycin hydrolase is essential for the breakdown of deiminated filaggrin into amino acids. J Biol Chem 2009 ; 284 : 12829-12836. [CrossRef] [PubMed] [Google Scholar]
  6. Méchin MC, Sebbag M, Arnaud J, et al. Update on peptidylarginine deiminases and deimination in skin physiology and severe human diseases. Int J Cosmet Sci 2007 ; 29 : 147-168. [CrossRef] [PubMed] [Google Scholar]
  7. Méchin MC, Enji M, Nachat R, et al. The peptidylarginine deiminases expressed in human epidermis differ in their substrate specificities and subcellular locations. Cell Mol Life Sci 2005 ; 62 : 1984-1995. [CrossRef] [PubMed] [Google Scholar]
  8. Ying S, Dong S, Kawada A, et al. Transcriptional regulation of peptidylarginine deiminase expression in human keratinocytes. J Dermatol Sci 2009 ; 53 : 2-9. [CrossRef] [PubMed] [Google Scholar]
  9. Adoue V, Chavanas S, Coudane F, et al. Long-range enhancer differentially regulated by c-Jun and JunD controls peptidylarginine deiminase-3 gene in keratinocytes. J Mol Biol 2008 ; 384 : 1048-1057. [CrossRef] [PubMed] [Google Scholar]
  10. Chavanas S, Adoue V, Méchin MC, et al. Long-range enhancer associated with chromatin looping allows AP-1 regulation of the peptidylarginine deiminase 3 gene in differentiated keratinocyte. PLoS One 2008 ; 3 : e3408. [CrossRef] [PubMed] [Google Scholar]
  11. Méchin MC, Coudane F, Adoue V, et al. Deimination is regulated at multiple levels including auto-deimination of peptidylarginine deiminases. Cell Mol Life Sci 2010 ; 67 : 1491-1503. [CrossRef] [PubMed] [Google Scholar]
  12. Wood DD, Bilbao JM, O’Connors P, Moscarello MA. Acute multiple sclerosis (Marburg type) is associated with developmentally immature myelin basic protein. Ann Neurol 1996 ; 40 : 18-24. [CrossRef] [PubMed] [Google Scholar]
  13. Moscarello MA, Mastronardi FG, Wood DD. The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem Res 2007 ; 32 : 251-256. [CrossRef] [PubMed] [Google Scholar]
  14. Musse AA, Li Z, Ackerley CA, et al. Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Dis Model Mech 2008 ; 1 : 229-240. [Google Scholar]
  15. Ishigami A, Ohsawa T, Hiratsuka M, et al. Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. J Neurosci Res 2005 ; 80 : 120-128. [CrossRef] [PubMed] [Google Scholar]
  16. Jang B, Kim E, Choi JK, et al. Accumulation of citrullinated proteins by up-regulated peptidylarginine deiminase 2 in brains of scrapie-infected mice: a possible role in pathogenesis. Am J Pathol 2008 ; 173 : 1129-1142. [CrossRef] [PubMed] [Google Scholar]
  17. Jang B, Jin JK, Jeon YC, et al. Involvement of peptidylarginine deiminase-mediated post-translational citrullination in pathogenesis of sporadic Creutzfeldt-Jakob disease. Acta Neuropathol 2010 ; 119 : 199-210. [CrossRef] [PubMed] [Google Scholar]
  18. Feng D, Imasawa T, Nagano T, et al. Citrullination preferentially proceeds in glomerular Bowman’s capsule and increases in obstructive nephropathy. Kidney Int 2005 ; 68 : 84-95. [CrossRef] [PubMed] [Google Scholar]
  19. Vincent C, Nogueira L, Clavel C, et al. Autoantibodies to citrullinated proteins: ACPA. Autoimmunity 2005 ; 38 : 17-24. [CrossRef] [PubMed] [Google Scholar]
  20. Sebbag M, Clavel C, Nogueira L, et al. Autoimmune response to post-translationally modified (citrullinated) proteins: prime suspect in the pathophysiology of rheumatoid arthritis. In : Zouali M, ed. The epigenetics of autoimmune diseases. New York : Wiley, 2009 : 279-308. [CrossRef] [Google Scholar]
  21. Masson-Bessière C, Sebbag M, Girbal-Neuhauser E, et al. The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. J Immunol 2001 ; 166 : 4177-4184. [PubMed] [Google Scholar]
  22. Suzuki A, Yamada R, Chang X, et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 2003 ; 34 : 395-402. [CrossRef] [PubMed] [Google Scholar]
  23. Gandjbakhch F, Fajardy I, Ferre B, et al. A functional haplotype of PADI4 gene in rheumatoid arthritis: positive correlation in a French population. J Rheumatol 2009 ; 36 : 881-886. [CrossRef] [PubMed] [Google Scholar]
  24. Burr ML, Naseem H, Hinks A, et al. PADI4 genotype is not associated with rheumatoid arthritis in a large UK Caucasian Population. Ann Rheum Dis 2010 ; 69 : 666-670. [CrossRef] [PubMed] [Google Scholar]
  25. Foulquier C, Sebbag M, Clavel C, et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum 2007 ; 56 : 3541-3553. [CrossRef] [PubMed] [Google Scholar]
  26. Proost P, Loos T, Mortier A, et al. Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. J Exp Med 2008 ; 205 : 2085-2097. [CrossRef] [PubMed] [Google Scholar]
  27. Chang X, Han J, Pang L, et al. Increased PADI4 expression in blood and tissues of patients with malignant tumors. BMC Cancer 2009 ; 9 : 40. [CrossRef] [PubMed] [Google Scholar]
  28. Yao H, Li P, Venters BJ, et al. Histone Arg modifications and p53 regulate the expression of OKL38, a mediator of apoptosis. J Biol Chem 2008 ; 283 : 20060-20068. [CrossRef] [PubMed] [Google Scholar]
  29. Cuthbert GL, Daujat S, Snowden AW, et al. Histone deimination antagonizes arginine methylation. Cell 2004 ; 118 : 545-553. [CrossRef] [PubMed] [Google Scholar]
  30. Wang Y, Wysocka J, Sayegh J, et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 2004 ; 306 : 279-283. [CrossRef] [PubMed] [Google Scholar]
  31. Ray-Gallet D, Gerard A, Polo S, Almouzni G. Variations sur le thème du « code histone ». Med Sci (Paris) 2005 ; 21 : 384-389. [Google Scholar]
  32. Wang Y, Li M, Stadler S, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 2009 ; 184 : 205-213. [CrossRef] [PubMed] [Google Scholar]
  33. Gougerot-Pocidalo MA, El Benna J, My-Chan Dang P, Elbim C. Quand les polynucléaires neutrophiles attrapent les agents pathogènes dans leurs filets. Med Sci (Paris) 2007 ; 23 : 464-465. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.