Free Access
Med Sci (Paris)
Volume 24, Number 4, Avril 2008
Page(s) 383 - 389
Section M/S revues
Published online 15 April 2008
  1. Gire V. La sénescence : une barrière télomérique à l’immortalité ou une réponse cellulaire aux stress physiologiques ? Med Sci (Paris) 2005; 21 : 491–7. [Google Scholar]
  2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100 : 57–70. [Google Scholar]
  3. Sharpless NE, DePinho RA. Cancer: crime and punishment. Nature 2005; 436 : 636–7. [Google Scholar]
  4. Feldser DM, Greider CW. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 2007; 11 : 461–9. [Google Scholar]
  5. Cosme-Blanco W, Shen MF, Lazar AJ, et al. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep 2007; 8 : 497–503. [Google Scholar]
  6. Gilson E, Geli V. How telomeres are replicated. Nat Rev Mol Cell Biol 2007; 8 : 825–38. [Google Scholar]
  7. Nittis T, Guittat L, Stewart SA. Alternative lengthening of telomeres (ALT) and chromatin: is there a connection ? Biochimie 2008; 90 : 5–12. [Google Scholar]
  8. D’Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426 : 194–8. [Google Scholar]
  9. De Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19 : 2100–10. [Google Scholar]
  10. Karlseder J, Smogorzewska A, de Lange T. Senescence induced by altered telomere state, not telomere loss. Science 2002; 295 : 2446–9. [Google Scholar]
  11. Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 2007; 448 : 1068–71. [Google Scholar]
  12. Azzalin CM, Reichenback P, Khoriauli L, et al. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007; 318 : 798–801. [Google Scholar]
  13. Broccoli D, Young JW, de Lange T. Telomerase activity in normal and maligant hematopoietic cells. Proc Natl Acad Sci USA 1995; 92 : 9082–6. [Google Scholar]
  14. Yasui W, Tahara E, Tahara H, et al. Immunohistochemical detection of human telomerase reverse transcriptase in normal mucosa and precancerous lesions of the stomach. Jpn J Cancer Res 1999; 90 : 589–95. [Google Scholar]
  15. Morrison SJ, Prowse KR, Ho P, Weissman IL. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 1996; 5 : 207–16. [Google Scholar]
  16. Rufer N, Nabholz M. Télomérase, élixir de jouvence des cellules humaines ? Med Sci (Paris) 2003; 19 : 345–50. [Google Scholar]
  17. Vulliamy TJ, Dokal I. Dyskeratosis congenita: the diverse clinical presentation of mutations in the telomerase complex. Biochimie 2008; 90 : 122–30. [Google Scholar]
  18. Gilson E, Londono-Vallejo A. Telomere length profiles in humans: all ends are not equal. Cell Cycle 2007; 6 : 2486–94. [Google Scholar]
  19. Brunori M, Gilson E. Télomère et cancer : quoi de plus à la fin ? Med Sci (Paris) 2005; 21 : 37–42. [Google Scholar]
  20. Kim NW, Piatyszek MA, Prowse KR, et al. Specific associations of human telomerase activity with immortal cells and cancer. Science 1994; 266 : 2011–4. [Google Scholar]
  21. Hahn WC, Counter CM, Lundberg AS, et al. Creation of human tumour cells with defined genetic elements. Nature 1999; 400 : 464–8. [Google Scholar]
  22. Counter CM, Avilion AA, Le Feuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells wich express telomerase activity. EMBO J 1992; 11 : 1921–9. [Google Scholar]
  23. Blasco MA, Lee HW, Hande MP, et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997; 91 : 25–34. [Google Scholar]
  24. Choudhury AR, Ju Z, Djojosubroto MW, et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 2007; 39 : 99–105. [Google Scholar]
  25. Greenberg RA, Chin L, Femino A, et al. Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer-prone mouse. Cell 1999; 97 : 515–25. [Google Scholar]
  26. Gonzalez-Suarez E, Samper E, Flores JM, Blasco MA. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 2000; 26 : 114–7. [Google Scholar]
  27. Rudolph KL, Millard M, Bosenberg MW, DePinho RA. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 2001; 28 : 155–9. [Google Scholar]
  28. Qi L, Strong MA, Karim BO, et al. Telomere fusion to chromosome breaks reduces oncogenic translocations and tumour formation. Nat Cell Biol 2005; 7 : 706–11. [Google Scholar]
  29. Artandi SE, Chang S, Lee SL, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 2000; 406 : 641–5. [Google Scholar]
  30. Schmitt CA, Fridman JS, Yang M, et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 2002; 109 : 335–46. [Google Scholar]
  31. Ju Z, Jiang H, Jaworski M, et al. Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med 2007; 13 : 742–7. [Google Scholar]
  32. Xue W, Zender L, Miething C, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445 : 656–60. [Google Scholar]
  33. Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005; 436 : 1186–90. [Google Scholar]
  34. Shelton DN, Chang E, Whittier PS, et al. Microarray analysis of replicative senescence. Curr Biol 1999; 9 : 939–45. [Google Scholar]
  35. Nickoloff BJ, Lingen MW, Chang BD, et al. Tumor suppressor maspin is up-regulated during keratinocyte senescence, exerting a paracrine antiangiogenic activity. Cancer Res 2004; 64 : 2956–61. [Google Scholar]
  36. Roninson IB. Tumor cell senescence in cancer treatment. Cancer Res 2003; 63 : 2705–15. [Google Scholar]
  37. Krtolica A, Parrinello S, Lockett S, et al. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 2001; 98 : 12072–7. [Google Scholar]
  38. Biroccio A, Rizzo A, Elli R, et al. TRF2 inhibition triggers apoptosis and reduces tumourigenicity of human melanoma cells. Eur J Cancer 2006; 42 : 1881–8. [Google Scholar]
  39. Nakanishi K, Kawai T, Kumaki F, et al. Expression of mRNAs for telomeric repeat binding factor (TRF)-1 and TRF2 in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Clin Cancer Res 2003; 9 : 1105–11. [Google Scholar]
  40. Munoz P, Blanco R, Flores JM, Blasco MA. XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat Genet 2005; 37 : 1063–71. [Google Scholar]
  41. De Cian A, Lacroix L, Douarre C, et al. Targeting telomeres and telomerase. Biochimie 2008; 90 : 131–55. [Google Scholar]
  42. Gomez D, O’Donohue MF, Wenner T, et al. The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells. Cancer Res 2006; 66 : 6908–12. [Google Scholar]
  43. Salvati E, Leonetti C, Rizzo A, et al. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J Clin Invest 2007; 117 : 3236–47. [Google Scholar]
  44. Jacobs JJ, de Lange T. Significant role for p16INK4a in p53-independent telomere-directed senescence. Curr Biol 2004; 14 : 2302–8. [Google Scholar]
  45. Ha L, Ichikawa T, Anver M, et al. ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence. Proc Natl Acad Sci USA 2007; 104 : 10968–73. [Google Scholar]
  46. Lechel A, Holstege H, Begus Y, et al. Telomerase deletion limits progression of p53-mutant hepatocellular carcinoma with short telomeres in chronic liver disease. Gastroenterology 2007; 132 : 1465–75. [Google Scholar]
  47. Hoareau-Aveilla C, Henry Y, Leblanc T. La dyskératose congénitale, une maladie méconnue due à un maintien défectueux des télomères. Med Sci (Paris) 2008; 24 : 390–8. [Google Scholar]
  48. Pommier Y, Kohn KW. Cycle cellulaire et points de contrôle : nouvelles cibles thérapeutiques. Med Sci (Paris) 2003; 19 : 173–86. [Google Scholar]
  49. Coulombel L. Traquer les télomères des cellules souches dans leur niche. Med Sci (Paris) 2008; 24 : 340. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.