Accès gratuit
Numéro
Med Sci (Paris)
Volume 24, Numéro 4, Avril 2008
Page(s) 383 - 389
Section M/S revues
DOI https://doi.org/10.1051/medsci/2008244383
Publié en ligne 15 avril 2008
  1. Gire V. La sénescence : une barrière télomérique à l’immortalité ou une réponse cellulaire aux stress physiologiques ? Med Sci (Paris) 2005; 21 : 491–7. [Google Scholar]
  2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100 : 57–70. [Google Scholar]
  3. Sharpless NE, DePinho RA. Cancer: crime and punishment. Nature 2005; 436 : 636–7. [Google Scholar]
  4. Feldser DM, Greider CW. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 2007; 11 : 461–9. [Google Scholar]
  5. Cosme-Blanco W, Shen MF, Lazar AJ, et al. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep 2007; 8 : 497–503. [Google Scholar]
  6. Gilson E, Geli V. How telomeres are replicated. Nat Rev Mol Cell Biol 2007; 8 : 825–38. [Google Scholar]
  7. Nittis T, Guittat L, Stewart SA. Alternative lengthening of telomeres (ALT) and chromatin: is there a connection ? Biochimie 2008; 90 : 5–12. [Google Scholar]
  8. D’Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426 : 194–8. [Google Scholar]
  9. De Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19 : 2100–10. [Google Scholar]
  10. Karlseder J, Smogorzewska A, de Lange T. Senescence induced by altered telomere state, not telomere loss. Science 2002; 295 : 2446–9. [Google Scholar]
  11. Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 2007; 448 : 1068–71. [Google Scholar]
  12. Azzalin CM, Reichenback P, Khoriauli L, et al. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007; 318 : 798–801. [Google Scholar]
  13. Broccoli D, Young JW, de Lange T. Telomerase activity in normal and maligant hematopoietic cells. Proc Natl Acad Sci USA 1995; 92 : 9082–6. [Google Scholar]
  14. Yasui W, Tahara E, Tahara H, et al. Immunohistochemical detection of human telomerase reverse transcriptase in normal mucosa and precancerous lesions of the stomach. Jpn J Cancer Res 1999; 90 : 589–95. [Google Scholar]
  15. Morrison SJ, Prowse KR, Ho P, Weissman IL. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 1996; 5 : 207–16. [Google Scholar]
  16. Rufer N, Nabholz M. Télomérase, élixir de jouvence des cellules humaines ? Med Sci (Paris) 2003; 19 : 345–50. [Google Scholar]
  17. Vulliamy TJ, Dokal I. Dyskeratosis congenita: the diverse clinical presentation of mutations in the telomerase complex. Biochimie 2008; 90 : 122–30. [Google Scholar]
  18. Gilson E, Londono-Vallejo A. Telomere length profiles in humans: all ends are not equal. Cell Cycle 2007; 6 : 2486–94. [Google Scholar]
  19. Brunori M, Gilson E. Télomère et cancer : quoi de plus à la fin ? Med Sci (Paris) 2005; 21 : 37–42. [Google Scholar]
  20. Kim NW, Piatyszek MA, Prowse KR, et al. Specific associations of human telomerase activity with immortal cells and cancer. Science 1994; 266 : 2011–4. [Google Scholar]
  21. Hahn WC, Counter CM, Lundberg AS, et al. Creation of human tumour cells with defined genetic elements. Nature 1999; 400 : 464–8. [Google Scholar]
  22. Counter CM, Avilion AA, Le Feuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells wich express telomerase activity. EMBO J 1992; 11 : 1921–9. [Google Scholar]
  23. Blasco MA, Lee HW, Hande MP, et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997; 91 : 25–34. [Google Scholar]
  24. Choudhury AR, Ju Z, Djojosubroto MW, et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 2007; 39 : 99–105. [Google Scholar]
  25. Greenberg RA, Chin L, Femino A, et al. Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer-prone mouse. Cell 1999; 97 : 515–25. [Google Scholar]
  26. Gonzalez-Suarez E, Samper E, Flores JM, Blasco MA. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 2000; 26 : 114–7. [Google Scholar]
  27. Rudolph KL, Millard M, Bosenberg MW, DePinho RA. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 2001; 28 : 155–9. [Google Scholar]
  28. Qi L, Strong MA, Karim BO, et al. Telomere fusion to chromosome breaks reduces oncogenic translocations and tumour formation. Nat Cell Biol 2005; 7 : 706–11. [Google Scholar]
  29. Artandi SE, Chang S, Lee SL, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 2000; 406 : 641–5. [Google Scholar]
  30. Schmitt CA, Fridman JS, Yang M, et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 2002; 109 : 335–46. [Google Scholar]
  31. Ju Z, Jiang H, Jaworski M, et al. Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med 2007; 13 : 742–7. [Google Scholar]
  32. Xue W, Zender L, Miething C, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445 : 656–60. [Google Scholar]
  33. Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005; 436 : 1186–90. [Google Scholar]
  34. Shelton DN, Chang E, Whittier PS, et al. Microarray analysis of replicative senescence. Curr Biol 1999; 9 : 939–45. [Google Scholar]
  35. Nickoloff BJ, Lingen MW, Chang BD, et al. Tumor suppressor maspin is up-regulated during keratinocyte senescence, exerting a paracrine antiangiogenic activity. Cancer Res 2004; 64 : 2956–61. [Google Scholar]
  36. Roninson IB. Tumor cell senescence in cancer treatment. Cancer Res 2003; 63 : 2705–15. [Google Scholar]
  37. Krtolica A, Parrinello S, Lockett S, et al. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 2001; 98 : 12072–7. [Google Scholar]
  38. Biroccio A, Rizzo A, Elli R, et al. TRF2 inhibition triggers apoptosis and reduces tumourigenicity of human melanoma cells. Eur J Cancer 2006; 42 : 1881–8. [Google Scholar]
  39. Nakanishi K, Kawai T, Kumaki F, et al. Expression of mRNAs for telomeric repeat binding factor (TRF)-1 and TRF2 in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Clin Cancer Res 2003; 9 : 1105–11. [Google Scholar]
  40. Munoz P, Blanco R, Flores JM, Blasco MA. XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat Genet 2005; 37 : 1063–71. [Google Scholar]
  41. De Cian A, Lacroix L, Douarre C, et al. Targeting telomeres and telomerase. Biochimie 2008; 90 : 131–55. [Google Scholar]
  42. Gomez D, O’Donohue MF, Wenner T, et al. The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells. Cancer Res 2006; 66 : 6908–12. [Google Scholar]
  43. Salvati E, Leonetti C, Rizzo A, et al. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J Clin Invest 2007; 117 : 3236–47. [Google Scholar]
  44. Jacobs JJ, de Lange T. Significant role for p16INK4a in p53-independent telomere-directed senescence. Curr Biol 2004; 14 : 2302–8. [Google Scholar]
  45. Ha L, Ichikawa T, Anver M, et al. ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence. Proc Natl Acad Sci USA 2007; 104 : 10968–73. [Google Scholar]
  46. Lechel A, Holstege H, Begus Y, et al. Telomerase deletion limits progression of p53-mutant hepatocellular carcinoma with short telomeres in chronic liver disease. Gastroenterology 2007; 132 : 1465–75. [Google Scholar]
  47. Hoareau-Aveilla C, Henry Y, Leblanc T. La dyskératose congénitale, une maladie méconnue due à un maintien défectueux des télomères. Med Sci (Paris) 2008; 24 : 390–8. [Google Scholar]
  48. Pommier Y, Kohn KW. Cycle cellulaire et points de contrôle : nouvelles cibles thérapeutiques. Med Sci (Paris) 2003; 19 : 173–86. [Google Scholar]
  49. Coulombel L. Traquer les télomères des cellules souches dans leur niche. Med Sci (Paris) 2008; 24 : 340. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.