Accès gratuit
Med Sci (Paris)
Volume 24, Numéro 4, Avril 2008
Page(s) 375 - 382
Section M/S revues
Publié en ligne 15 avril 2008
  1. Schmidt FR. Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 2004; 65 : 363–72. [Google Scholar]
  2. Hunt I. From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr Purif 2005; 40 : 1–22. [Google Scholar]
  3. Sodoyer R. Expression systems for the production of recombinant pharmaceuticals. Biodrugs 2004; 18 : 51–62. [Google Scholar]
  4. Lee E, Roth J, Paulson JC. Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of beta- galactoside alpha 2,6-sialyltransferase. J Biol Chem 1989; 264 : 13848–55. [Google Scholar]
  5. Paccalet T, Bardor M, Rihouey C, et al. Synthesis of sialic acid in plants. Plant Biotech J 2007; 5: 12–25. [Google Scholar]
  6. Hamilton SR, Davidson RC, Sethuraman N, et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 2006; 313 : 1441–3. [Google Scholar]
  7. Hiatt A, Caffferkey R, Bowdish C. Production of antibodies in transgenic plants. Nature 1989; 342 : 76–8. [Google Scholar]
  8. Ma JKC, Chikwarnba R, Sparrow P, et al. Plant-derived pharmaceuticals - the road forward. Trends Plant Sci 2005; 10 : 580–5. [Google Scholar]
  9. Bardor M, Faveeuw C, Fitchette AC, et al. Immunoreactivity in mammals of two typical plant glyco-epitopes, core alpha(1,3)-fucose and core xylose. Glycobiology 2003; 13 : 427–34. [Google Scholar]
  10. Saint-Jore-Dupas C, Faye L, Gomord V. From planta to pharma with glycosylation in the toolbox. Trends Biotechnol 2007; 25 : 317–23. [Google Scholar]
  11. Weise A, Altman F, Rodriguez-Franco M, et al. High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella. Plant Biotechnol J 2007; 5 : 389–401. [Google Scholar]
  12. Frank W, Decker EL, Reski R. Molecular tools to study Physcomitrella patens. Plant Biol 2005; 7 : 220–7. [Google Scholar]
  13. Stevens DR, Purton S. Genetic engineering of eukaryotic algae: Progress and prospects. J Phycol 1997; 33 : 713–22. [Google Scholar]
  14. Leon-Banares R, Gonzalez-Ballester D, Galvan A, Fernandez E. Transgenic microalgae as green cell-factories. Trends Biotechnol 2004; 22 : 45–52. [Google Scholar]
  15. Franklin SE, Mayfield SP. Recent developments in the production of human therapeutic proteins in eukaryotic algae. Ext Opin Biol Ther 2005; 5 : 225–35. [Google Scholar]
  16. Walker TL, Collet C, Purton S. Algal transgenics in the genomic ERA. J Phycol 2005; 41 : 1077–93. [Google Scholar]
  17. Walker TL, Purton S, Becker DK, Collet C. Microalgae as bioreactors. Plant Cell Rep 2005; 24 : 629–41. [Google Scholar]
  18. Harris EH. Chlamydomonas as a model organism. Annu Rev Plant Phys 2001; 52 : 363–406. [Google Scholar]
  19. Kim DH, Kim YT, Cho JJ, et al. Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Marine Biotechnol 2002; 4 : 63–73. [Google Scholar]
  20. Debuchy R, Purton S, Rochaix JD, The arginosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 1989; 8 : 2803–9. [Google Scholar]
  21. Boynton JE, Gillham NW, Harris EH, et al. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 1988; 240 : 1534–8. [Google Scholar]
  22. Randolph-Anderson BL, Boynton JE, Gillham NW, et al. Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Mol Gen Genet 1993; 236 : 235–44. [Google Scholar]
  23. Brown LE, Sprecher SL, Keller LR. Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Cell Biol 1991; 11 : 2328–32. [Google Scholar]
  24. Kindle K. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Aca Sci USA 1990; 87 : 1228–32. [Google Scholar]
  25. Dunahay TG. Nuclear transformation of Chlamydomonas reinhardtii with silicon carbide fibers. J Phycol 1992; 28 : 11. [Google Scholar]
  26. Kumar SV, Misquitta RW, Reddy VS, et al. Genetic transformation of the green alga - Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Science 2004; 166 : 731–8. [Google Scholar]
  27. Geng DG, Wang YQ, Wang P, et al. Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J Appl Phycol 2003; 15 : 451–6. [Google Scholar]
  28. Tan C, Qin S, Zhang Q, et al. Establishment of a micro-particle bombardment transformation system for Dunaliella salina. J Microbiol 2005; 43 : 361–5. [Google Scholar]
  29. Jarvis EE, Brown LM. Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea. Curr Genet 1991; 19 : 317–21. [Google Scholar]
  30. Dawson HN, Burlingame R, Cannons AC. Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr Microbiol 1997; 35 : 356–62. [Google Scholar]
  31. Chow K, Tung WL. Electrotransformation of Chlorella vulgaris. Plant Cell Reports 1999; 18 : 778–80. [Google Scholar]
  32. Teng CY, Qin S, Liu JG, et al. Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. J Appl Phycol 2002; 14 : 497–500. [Google Scholar]
  33. Scheidlmeier B, Schmitt R, Müller W, et al. Nuclear transformation of Volvox carteri. Proc Natl Acad Sci USA 1994; 91 : 5080–4. [Google Scholar]
  34. Dunahay TG, Jarvis EE, Roessler PG. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 1995; 31 : 1004–12. [Google Scholar]
  35. Apt KE, Kroth-Pancic PG, Grossman AR. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 1996; 252 : 572–9. [Google Scholar]
  36. Fischer H, Robl I, Sumper M, Kroger N. Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (Bacillariophyceae). J Phycol 1999; 35 : 113–20. [Google Scholar]
  37. Poulsen N, Kroger N. A new molecular tool for transgenic diatoms: control of mRNA and protein biosynthesis by an inducible promoter-terminator cassette. Febs Lett 2005; 272 : 3413–23. [Google Scholar]
  38. ten Lohuis MR, Miller DJ. Light-regulated transcription of genes encoding peridinin chlorophyll a proteins and the major intrinsic light-harvesting complex proteins in the dinoflagellate Amphidinium carterae hulburt (Dinophycae). Changes In cytosine methylation accompany photoadaptation. Plant Physiol 1998; 117 : 189–96. [Google Scholar]
  39. Minoda A, Sakagami R, Yagisawa F, et al. Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae. Plant Cell Physiol 2004; 45 : 667–71. [Google Scholar]
  40. Lapidot M, Raveh D, Sivan A, et al. Stable chloroplaste transformation of the unicellular red alga Porphyridium species. Plant Physiol 2002; 129 : 7–12. [Google Scholar]
  41. Doetsch NA, Favreau MR, Kuscuoglu N, et al. Chloroplast transformation in Euglena gracilis: splicing of a group III twintron transcribed from a transgenic psbK operon. Curr Genet 2001; 39 : 49–60. [Google Scholar]
  42. Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 2003; 100 : 438–42. [Google Scholar]
  43. Manuell AL, Beligni MV, Elder JH, et al. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol J 2007; 5 : 402–12. [Google Scholar]
  44. Sun M, Qian K, Su N, et al. Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 2003; 25 : 1087–92. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.