Free Access
Med Sci (Paris)
Volume 24, Number 4, Avril 2008
Page(s) 375 - 382
Section M/S revues
Published online 15 April 2008
  1. Schmidt FR. Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 2004; 65 : 363–72. [Google Scholar]
  2. Hunt I. From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr Purif 2005; 40 : 1–22. [Google Scholar]
  3. Sodoyer R. Expression systems for the production of recombinant pharmaceuticals. Biodrugs 2004; 18 : 51–62. [Google Scholar]
  4. Lee E, Roth J, Paulson JC. Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of beta- galactoside alpha 2,6-sialyltransferase. J Biol Chem 1989; 264 : 13848–55. [Google Scholar]
  5. Paccalet T, Bardor M, Rihouey C, et al. Synthesis of sialic acid in plants. Plant Biotech J 2007; 5: 12–25. [Google Scholar]
  6. Hamilton SR, Davidson RC, Sethuraman N, et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 2006; 313 : 1441–3. [Google Scholar]
  7. Hiatt A, Caffferkey R, Bowdish C. Production of antibodies in transgenic plants. Nature 1989; 342 : 76–8. [Google Scholar]
  8. Ma JKC, Chikwarnba R, Sparrow P, et al. Plant-derived pharmaceuticals - the road forward. Trends Plant Sci 2005; 10 : 580–5. [Google Scholar]
  9. Bardor M, Faveeuw C, Fitchette AC, et al. Immunoreactivity in mammals of two typical plant glyco-epitopes, core alpha(1,3)-fucose and core xylose. Glycobiology 2003; 13 : 427–34. [Google Scholar]
  10. Saint-Jore-Dupas C, Faye L, Gomord V. From planta to pharma with glycosylation in the toolbox. Trends Biotechnol 2007; 25 : 317–23. [Google Scholar]
  11. Weise A, Altman F, Rodriguez-Franco M, et al. High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella. Plant Biotechnol J 2007; 5 : 389–401. [Google Scholar]
  12. Frank W, Decker EL, Reski R. Molecular tools to study Physcomitrella patens. Plant Biol 2005; 7 : 220–7. [Google Scholar]
  13. Stevens DR, Purton S. Genetic engineering of eukaryotic algae: Progress and prospects. J Phycol 1997; 33 : 713–22. [Google Scholar]
  14. Leon-Banares R, Gonzalez-Ballester D, Galvan A, Fernandez E. Transgenic microalgae as green cell-factories. Trends Biotechnol 2004; 22 : 45–52. [Google Scholar]
  15. Franklin SE, Mayfield SP. Recent developments in the production of human therapeutic proteins in eukaryotic algae. Ext Opin Biol Ther 2005; 5 : 225–35. [Google Scholar]
  16. Walker TL, Collet C, Purton S. Algal transgenics in the genomic ERA. J Phycol 2005; 41 : 1077–93. [Google Scholar]
  17. Walker TL, Purton S, Becker DK, Collet C. Microalgae as bioreactors. Plant Cell Rep 2005; 24 : 629–41. [Google Scholar]
  18. Harris EH. Chlamydomonas as a model organism. Annu Rev Plant Phys 2001; 52 : 363–406. [Google Scholar]
  19. Kim DH, Kim YT, Cho JJ, et al. Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Marine Biotechnol 2002; 4 : 63–73. [Google Scholar]
  20. Debuchy R, Purton S, Rochaix JD, The arginosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 1989; 8 : 2803–9. [Google Scholar]
  21. Boynton JE, Gillham NW, Harris EH, et al. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 1988; 240 : 1534–8. [Google Scholar]
  22. Randolph-Anderson BL, Boynton JE, Gillham NW, et al. Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Mol Gen Genet 1993; 236 : 235–44. [Google Scholar]
  23. Brown LE, Sprecher SL, Keller LR. Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Cell Biol 1991; 11 : 2328–32. [Google Scholar]
  24. Kindle K. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Aca Sci USA 1990; 87 : 1228–32. [Google Scholar]
  25. Dunahay TG. Nuclear transformation of Chlamydomonas reinhardtii with silicon carbide fibers. J Phycol 1992; 28 : 11. [Google Scholar]
  26. Kumar SV, Misquitta RW, Reddy VS, et al. Genetic transformation of the green alga - Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Science 2004; 166 : 731–8. [Google Scholar]
  27. Geng DG, Wang YQ, Wang P, et al. Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J Appl Phycol 2003; 15 : 451–6. [Google Scholar]
  28. Tan C, Qin S, Zhang Q, et al. Establishment of a micro-particle bombardment transformation system for Dunaliella salina. J Microbiol 2005; 43 : 361–5. [Google Scholar]
  29. Jarvis EE, Brown LM. Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea. Curr Genet 1991; 19 : 317–21. [Google Scholar]
  30. Dawson HN, Burlingame R, Cannons AC. Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr Microbiol 1997; 35 : 356–62. [Google Scholar]
  31. Chow K, Tung WL. Electrotransformation of Chlorella vulgaris. Plant Cell Reports 1999; 18 : 778–80. [Google Scholar]
  32. Teng CY, Qin S, Liu JG, et al. Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. J Appl Phycol 2002; 14 : 497–500. [Google Scholar]
  33. Scheidlmeier B, Schmitt R, Müller W, et al. Nuclear transformation of Volvox carteri. Proc Natl Acad Sci USA 1994; 91 : 5080–4. [Google Scholar]
  34. Dunahay TG, Jarvis EE, Roessler PG. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 1995; 31 : 1004–12. [Google Scholar]
  35. Apt KE, Kroth-Pancic PG, Grossman AR. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 1996; 252 : 572–9. [Google Scholar]
  36. Fischer H, Robl I, Sumper M, Kroger N. Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (Bacillariophyceae). J Phycol 1999; 35 : 113–20. [Google Scholar]
  37. Poulsen N, Kroger N. A new molecular tool for transgenic diatoms: control of mRNA and protein biosynthesis by an inducible promoter-terminator cassette. Febs Lett 2005; 272 : 3413–23. [Google Scholar]
  38. ten Lohuis MR, Miller DJ. Light-regulated transcription of genes encoding peridinin chlorophyll a proteins and the major intrinsic light-harvesting complex proteins in the dinoflagellate Amphidinium carterae hulburt (Dinophycae). Changes In cytosine methylation accompany photoadaptation. Plant Physiol 1998; 117 : 189–96. [Google Scholar]
  39. Minoda A, Sakagami R, Yagisawa F, et al. Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae. Plant Cell Physiol 2004; 45 : 667–71. [Google Scholar]
  40. Lapidot M, Raveh D, Sivan A, et al. Stable chloroplaste transformation of the unicellular red alga Porphyridium species. Plant Physiol 2002; 129 : 7–12. [Google Scholar]
  41. Doetsch NA, Favreau MR, Kuscuoglu N, et al. Chloroplast transformation in Euglena gracilis: splicing of a group III twintron transcribed from a transgenic psbK operon. Curr Genet 2001; 39 : 49–60. [Google Scholar]
  42. Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 2003; 100 : 438–42. [Google Scholar]
  43. Manuell AL, Beligni MV, Elder JH, et al. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol J 2007; 5 : 402–12. [Google Scholar]
  44. Sun M, Qian K, Su N, et al. Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 2003; 25 : 1087–92. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.