Free Access
Issue
Med Sci (Paris)
Volume 24, Number 4, Avril 2008
Page(s) 390 - 398
Section M/S revues
DOI https://doi.org/10.1051/medsci/2008244390
Published online 15 April 2008
  1. Zinsser F. Atropha cutis reticularis cum pigmentatione, dystrophia ungiumet leukoplakia oris. Ikonogr Dermatol 1906; 5 : 219–23. [Google Scholar]
  2. Knight S, Vulliamy T, Copplestone A, et al. Dyskeratosis congenita (DC) registry : identification of new features of DC. Br J Haematol 1998; 103 : 990–6. [Google Scholar]
  3. Dokal I. Dyskeratosis congenita in all its forms. Br J Haematol 2000; 110 : 768–79. [Google Scholar]
  4. Dokal I. Fanconi’s anaemia and related bone marrow failure syndromes. Br Med Bull 2006; 77-78 : 37–53. [Google Scholar]
  5. Mason PJ. Stem cells, telomerase and dyskeratosis congenita. Bioessays 2003; 25 : 126–33. [Google Scholar]
  6. Mason PJ, Wilson DB, Bessler M. Dyskeratosis congenita : a disease of dysfunctional telomere maintenance. Curr Mol Med 2005; 5 : 159–70. [Google Scholar]
  7. Dokal I, Vulliamy T. Dyskeratosis congenita : its link to telomerase and aplastic anaemia. Blood Rev 2003; 17 : 217–25. [Google Scholar]
  8. Hoyeraal HM, Lamvik J, Moe PJ. Congenital hypoplastic thrombocytopenia and cerebral malformations in two brothers. Acta Paediatr Scand 1970; 59 : 185–91. [Google Scholar]
  9. Fogarty PF, Yamaguchi H, Wiestner A, et al. Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet 2003; 362 : 1628–30. [Google Scholar]
  10. Vulliamy T, Marrone A, Dokal I, Mason PJ. Association between aplastic anaemia and mutations in telomerase RNA. Lancet 2002; 359 : 2168–70. [Google Scholar]
  11. Vulliamy TJ, Walne A, Baskaradas A, et al. Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol Dis 2005; 34 : 257–63. [Google Scholar]
  12. Yamaguchi H, Baerlocher GM, Lansdorp P, et al. Mutations of the human telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic syndrome. Blood 2003; 102 : 916–8. [Google Scholar]
  13. Yamaguchi H, Calado RT, Ly H, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 2005; 352 : 1413–24. [Google Scholar]
  14. Armanios MY, Chen JJ, Cogan JD, et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med 2007; 356 : 1317–26. [Google Scholar]
  15. Dokal I, Bungey J, Williamson P, et al. Dyskeratosis congenita fibroblasts are abnormal and have unbalanced chromosomal rearrangements. Blood 1992; 80 : 3090–6. [Google Scholar]
  16. Vulliamy TJ, Knight SW, Mason PJ, Dokal I. Very short telomeres in the peripheral blood of patients with X-linked and autosomal dyskeratosis congenita. Blood Cells Mol Dis 2001; 27 : 353–7. [Google Scholar]
  17. Drachtman RA, Alter BP. Dyskeratosis congenita : clinical and genetic heterogeneity. Report of a new case and review of the literature. Am J Pediatr Hematol Oncol 1992; 14 : 297–304. [Google Scholar]
  18. Connor JM, Gatherer D, Gray FC, et al. Assignment of the gene for dyskeratosis congenita to Xq28. Hum Genet 1986; 72 : 348–51. [Google Scholar]
  19. Heiss NS, Knight SW, Vulliamy TJ, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 1998; 19 : 32–8. [Google Scholar]
  20. Vulliamy TJ, Marrone A, Knight SW, et al. Mutations in dyskeratosis congenita : their impact on telomere length and the diversity of clinical presentation. Blood 2006; 107 : 2680–5. [Google Scholar]
  21. Davis DR. Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res 1995; 23 : 5020–6. [Google Scholar]
  22. Meroueh M, Grohar PJ, Qiu J, et al. Unique structural and stabilizing roles for the individual pseudouridine residues in the 1920 region of Escherichia coli 23S rRNA. Nucleic Acids Res 2000; 28 : 2075–83. [Google Scholar]
  23. Henras A, Henry Y, Bousquet-Antonelli C, et al. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J 1998; 17 : 7078–90. [Google Scholar]
  24. Reichow SL, Hamma T, Ferré-D’Amaré AR, Varani G. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 2007; 35 : 1452–64. [Google Scholar]
  25. Meier UT. The many facets of H/ACA ribonucleoproteins. Chromosoma 2005; 114 : 1–14. [Google Scholar]
  26. Henras AK, Dez C, Henry Y. RNA structure and function in C/D and H/ACA s(no)RNPs. Curr Opin Struct Biol 2004; 14 : 335–43. [Google Scholar]
  27. Valadkhan S. snRNAs as the catalysts of pre-mRNA splicing. Curr Opin Chem Biol 2005; 9 : 603–8. [Google Scholar]
  28. Dönmez G, Hartmuth K, Lührmann R. Modified nucleotides at the 5’ end of human U2 snRNA are required for spliceosomal E-complex formation. RNA 2004; 10 : 1925–33. [Google Scholar]
  29. Chen JL, Blasco MA, Greider CW. Secondary structure of vertebrate telomerase RNA. Cell 2000; 100 : 503–14. [Google Scholar]
  30. Mitchell JR, Cheng J, Collins K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3’ end. Mol Cell Biol 1999; 19 : 567–76. [Google Scholar]
  31. Mitchell JR, Wood E, Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 1999; 402 : 551–5. [Google Scholar]
  32. Autexier C, Lue NF. The structure and function of telomerase reverse transcriptase. Annu Rev Biochem 2006; 75 : 493–517. [Google Scholar]
  33. Moon IK, Jarstfer MB. The human telomere and its relationship to human disease, therapy, and tissue engineering. Front Biosci 2007; 12 : 4595–620. [Google Scholar]
  34. Masutomi K, Yu EY, Khurts S, et al. Telomerase maintains telomere structure in normal human cells. Cell 2003; 114 : 241–53. [Google Scholar]
  35. Pogačić V, Dragon F, Filipowicz W. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins NHP2 and NOP10. Mol Cell Biol 2000; 20 : 9028–40. [Google Scholar]
  36. Li L, Ye K. Crystal structure of an H/ACA box ribonucleoprotein particle. Nature 2006; 443 : 302–7. [Google Scholar]
  37. Normand C, Capeyrou R, Quevillon-Chéruel S, et al. Analysis of the binding of the N-terminal conserved domain of yeast Cbf5p to a box H/ACA snoRNA. RNA 2006; 12 : 1868–82. [Google Scholar]
  38. Cossu F, Vulliamy TJ, Marrone A, et al. A novel DKC1 mutation, severe combined immunodeficiency (T+B-NK- SCID) and bone marrow transplantation in an infant with Hoyeraal-Hreidarsson syndrome. Br J Haematol 2002; 119 : 765–8. [Google Scholar]
  39. Knight SW, Heiss NS, Vulliamy TJ, et al. Unexplained aplastic anaemia, immunodeficiency, and cerebellar hypoplasia (Hoyeraal-Hreidarsson syndrome) due to mutations in the dyskeratosis congenita gene, DKC1. Br J Haematol 1999; 107 : 335–9. [Google Scholar]
  40. Sznajer Y, Baumann C, David A, et al. Further delineation of the congenital form of X-linked dyskeratosis congenita (Hoyeraal-Hreidarsson syndrome). Eur J Pediatr 2003; 162 : 863–7. [Google Scholar]
  41. Vulliamy T, Marrone A, Goldman F, et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 2001; 413 : 432–5. [Google Scholar]
  42. Fu D, Collins K. Distinct biogenesis pathways for human telomerase RNA and H/ACA small nucleolar RNAs. Mol Cell 2003; 11 : 1361–72. [Google Scholar]
  43. Marrone A, Stevens D, Vulliamy T, et al. Heterozygous telomerase RNA mutations found in dyskeratosis congenita and aplastic anemia reduce telomerase activity via haploinsufficiency. Blood 2004; 104 : 3936–42. [Google Scholar]
  44. Marrone A, Walne A, Dokal I. Dyskeratosis congenita : telomerase, telomeres and anticipation. Curr Opin Genet Dev 2005; 15 : 249–57. [Google Scholar]
  45. Cerone MA, Ward RJ, Londono-Vallejo JA, Autexier C. Telomerase RNA mutated in autosomal dyskeratosis congenita reconstitutes a weakly active telomerase enzyme defective in telomere elongation. Cell Cycle 2005; 4 : 585–9. [Google Scholar]
  46. Armanios M, Chen JL, Chang YP, et al. Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc Natl Acad Sci USA 2005; 102 : 15960–4. [Google Scholar]
  47. Vulliamy T, Marrone A, Szydlo R, et al. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet 2004; 36 : 447–9. [Google Scholar]
  48. Walne AJ, Vulliamy T, Marrone A, et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet 2007; 16 : 1619–29. [Google Scholar]
  49. Alter BP, Baerlocher GM, Savage SA, et al. Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood 2007; 110 : 1439–47. [Google Scholar]
  50. Yoon A, Peng G, Brandenburger Y, et al. Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 2006; 312 : 902–6. [Google Scholar]
  51. Liu JM, Ellis SR. Ribosomes and marrow failure : coincidental association or molecular paradigm ? Blood 2006; 107 : 4583–8. [Google Scholar]
  52. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266 : 2011–5. [Google Scholar]
  53. Langston AA, Sanders JE, Deeg HJ, et al. Allogeneic marrow transplantation for aplastic anaemia associated with dyskeratosis congenita. Br J Haematol 1996; 92 : 758–65. [Google Scholar]
  54. Rocha V, Devergie A, Socie G, et al. Unusual complications after bone marrow transplantation for dyskeratosis congenita. Br J Haematol 1998; 103 : 243–8. [Google Scholar]
  55. Yabe M, Yabe H, Hattori K, et al. Fatal interstitial pulmonary disease in a patient with dyskeratosis congenita after allogeneic bone marrow transplantation. Bone Marrow Transplant 1997; 19 : 389–92. [Google Scholar]
  56. Lau YL, Ha SY, Chan CF, et al. Bone marrow transplant for dyskeratosis congenita. Br J Haematol 1999; 105 : 571. [Google Scholar]
  57. Nobili B, Rossi G, De Stefano P, et al. Successful umbilical cord blood transplantation in a child with dyskeratosis congenita after a fludarabine-based reduced-intensity conditioning regimen. Br J Haematol 2002; 119 : 573–4. [Google Scholar]
  58. Savage SA, Giri N, Baerlocher GM, et al. TINF2, a component of the shelterin telomere protection complex, is mutated in Dyskeratosis congenita. Am J Hum Genet 2008; 82 : 501–9. [Google Scholar]
  59. De Lange T. Shelterin : the protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19 : 2100–10. [Google Scholar]
  60. Rufer N, Nabholz M. Télomérase, élixir de jouvence des cellules humaines ? Med Sci (Paris) 2003; 19 : 345–50. [Google Scholar]
  61. Brunori M, Gilson E. Télomère et cancer : quoi de plus à la fin ? Med Sci (Paris) 2005; 21 : 37–42. [Google Scholar]
  62. Londono-Vallejo A, Lenain C, Gilson E. Cibles les télomères pour forcer les cellules cancéreuses à rentrer en sénescence. Med Sci (Paris) 2008; 24 : 383–9. [Google Scholar]
  63. Gilgenkrantz H. La longévité : un héritage paternel. Med Sci (Paris) 2007; 23 : 812. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.