Free Access
Issue
Med Sci (Paris)
Volume 24, Number 4, Avril 2008
Page(s) 399 - 406
Section M/S revues
DOI https://doi.org/10.1051/medsci/2008244399
Published online 15 April 2008
  1. Fill M, Copello JA. Ryanodine receptor calcium release channels. Physiol Rev 2002; 82 : 893–922. [Google Scholar]
  2. Bers DM. Macromolecular complexes regulating cardiac ryanodine receptor function. J Mol Cell Cardiol 2004; 37 : 417–29. [Google Scholar]
  3. Brillantes AB, Ondrias K, Scott A, et al. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 1994; 77 : 513–23. [Google Scholar]
  4. Balshaw DM, Xu L, Yamaguchi N, et al. Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). J Biol Chem 2001; 276 : 20144–53. [Google Scholar]
  5. Yamaguchi N, Takahashi N, Xu L, et al. Early cardiac hypertrophy in mice with impaired calmodulin regulation of cardiac muscle Ca release channel. J Clin Invest 2007; 117 : 1344–53. [Google Scholar]
  6. Kapiloff MS, Jackson N, Airhart N. mAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope. J Cell Sci 2001; 114 : 3167–76. [Google Scholar]
  7. Witcher DR, Kovacs RJ, Schulman H, et al. Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem 1991; 266 : 11144–52. [Google Scholar]
  8. Wehrens XH, Lehnart SE, Reiken SR, Marks AR. Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 2004; 94 : e61–70. [Google Scholar]
  9. Farrell EF, Antaramian A, Rueda A, et al. Sorcin inhibits calcium release and modulates excitation-contraction coupling in the heart. J Biol Chem 2003; 278 : 34660–6. [Google Scholar]
  10. Seidler T, Miller SL, Loughrey CM, et al. Effects of adenovirus-mediated sorcin overexpression on excitation-contraction coupling in isolated rabbit cardiomyocytes. Circ Res 2003; 93 : 132–9. [Google Scholar]
  11. Terentyev D, Viatchenko-Karpinski S, Valdivia HH, et al. Luminal Ca2+ controls termination and refractory behavior of Ca2+-induced Ca2+ release in cardiac myocytes. Circ Res 2002; 91 : 414–20. [Google Scholar]
  12. Xu L, Mann G, Meissner G. Regulation of cardiac Ca2+ release channel (ryanodine receptor) by Ca2+, H+, Mg2+, and adenine nucleotides under normal and simulated ischemic conditions. Circ Res 1996; 79 : 1100–9. [Google Scholar]
  13. Xu L, Eu JP, Meissner G, Stamler JS. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 1998; 279 : 234–7. [Google Scholar]
  14. Zhang JZ, Wu Y, Williams BY, et al. Oxidation of the skeletal muscle Ca2+ release channel alters calmodulin binding. Am J Physiol 1999; 276 : C46–53. [Google Scholar]
  15. Zissimopoulos S, Docrat N, Lai FA. Redox sensitivity of the ryanodine receptor interaction with FK506-binding protein. J Biol Chem 2007; 282 : 6976–83. [Google Scholar]
  16. Callaway C, Seryshev A, Wang JP, et al. Localization of the high and low affinity 3Hryanodine binding sites on the skeletal muscle Ca2+ release channel. J Biol Chem 1994; 269 : 15876–84. [Google Scholar]
  17. Yano M, Kobayashi S, Kohno M, et al. FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation 2003; 107 : 477–84. [Google Scholar]
  18. Lehnart SE, Terrenoire C, Reiken S, et al. Stabilization of cardiac ryanodine receptor prevents intracellular calcium leak and arrhythmias. Proc Natl Acad Sci USA 2006; 103 : 7906–10. [Google Scholar]
  19. George CH, Jundi H, Thomas NL, et al. Ryanodine receptors and ventricular arrhythmias : emerging trends in mutations, mechanisms and therapies. J Mol Cell Cardiol 2007; 42 : 34–50. [Google Scholar]
  20. Priori SG, Napolitano C. Cardiac and skeletal muscle disorders caused by mutations in the intracellular Ca2+ release channels. J Clin Invest 2005; 115 : 2033–8. [Google Scholar]
  21. Pourrier M, Nattel S. Protéines d’ancrage et mort subite cardiaque : comment et pourquoi ? Med Sci (Paris) 2004; 20 : 437–41. [Google Scholar]
  22. Fernandez-Velasco M, Gomez AM, Richard S. Unzipping RyR2 in adult cardiomyocytes : getting closer to mechanisms of inherited ventricular arrhythmias ? Cardiovasc Res 2006; 70 : 407–9. [Google Scholar]
  23. Lehnart SE, Wehrens XH, Laitinen PJ, et al. Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak. Circulation 2004; 109 : 3208–14. [Google Scholar]
  24. Terentyev D, Nori A, Santoro M, et al. Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death. Circ Res 2006; 98 : 1151–8. [Google Scholar]
  25. Litwin SE, Zhang D, Bridge JH. Dyssynchronous Ca2+ sparks in myocytes from infarcted hearts. Circ Res 2000; 87 : 1040–7. [Google Scholar]
  26. Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor) : defective regulation in failing hearts. Cell 2000; 101 : 365–76. [Google Scholar]
  27. Doi M, Yano M, Kobayashi S, et al. Propranolol prevents the development of heart failure by restoring FKBP12.6-mediated stabilization of ryanodine receptor. Circulation 2002; 105 : 1374–9. [Google Scholar]
  28. Lehnart SE, Wehrens XH, Reiken S, et al. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 2005; 123 : 25–35. [Google Scholar]
  29. Benkusky NA, Weber CS, Scherman JA, et al. Intact beta-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor. Circ Res 2007; 101 : 819–29. [Google Scholar]
  30. Oestreich EA, Wang H, Malik S, et al. Epac-mediated activation of phospholipase C(epsilon) plays a critical role in beta-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes. J Biol Chem 2007; 282 : 5488–95. [Google Scholar]
  31. Pereira L, Metrich M, Fernandez-Velasco M, et al. The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. J Physiol 2007; 583 : 685–94. [Google Scholar]
  32. Bers DM. Calcium and cardiac rhythms : physiological and pathophysiological. Circ Res 2002; 90 : 14–7. [Google Scholar]
  33. Fauconnier J, Lacampagne A, Rauzier JM, et al. Frequency-dependent and proarrhythmogenic effects of FK-506 in rat ventricular cells. Am J Physiol Heart Circ Physiol 2005; 288 : H778–86. [Google Scholar]
  34. Fauconnier J, Lacampagne A, Rauzier JM, et al. Ca2+-dependent reduction of IK1 in rat ventricular cells : a novel paradigm for arrhythmia in heart failure ? Cardiovasc Res 2005; 68 : 204–12. [Google Scholar]
  35. Escande D. Aspects moléculaires de la mort subite de l’adulte. Med Sci (Paris) 2004; 20 : 623–5. [Google Scholar]
  36. Yamamoto T, Yano M, Xu X, et al. Identification of target domains of the cardiac ryanodine receptor to correct channel disorder in failing hearts. Circulation 2008; 117 : 762–72 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.