Accès gratuit
Numéro
Med Sci (Paris)
Volume 24, Numéro 4, Avril 2008
Page(s) 399 - 406
Section M/S revues
DOI https://doi.org/10.1051/medsci/2008244399
Publié en ligne 15 avril 2008
  1. Fill M, Copello JA. Ryanodine receptor calcium release channels. Physiol Rev 2002; 82 : 893–922. [Google Scholar]
  2. Bers DM. Macromolecular complexes regulating cardiac ryanodine receptor function. J Mol Cell Cardiol 2004; 37 : 417–29. [Google Scholar]
  3. Brillantes AB, Ondrias K, Scott A, et al. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 1994; 77 : 513–23. [Google Scholar]
  4. Balshaw DM, Xu L, Yamaguchi N, et al. Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). J Biol Chem 2001; 276 : 20144–53. [Google Scholar]
  5. Yamaguchi N, Takahashi N, Xu L, et al. Early cardiac hypertrophy in mice with impaired calmodulin regulation of cardiac muscle Ca release channel. J Clin Invest 2007; 117 : 1344–53. [Google Scholar]
  6. Kapiloff MS, Jackson N, Airhart N. mAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope. J Cell Sci 2001; 114 : 3167–76. [Google Scholar]
  7. Witcher DR, Kovacs RJ, Schulman H, et al. Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem 1991; 266 : 11144–52. [Google Scholar]
  8. Wehrens XH, Lehnart SE, Reiken SR, Marks AR. Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 2004; 94 : e61–70. [Google Scholar]
  9. Farrell EF, Antaramian A, Rueda A, et al. Sorcin inhibits calcium release and modulates excitation-contraction coupling in the heart. J Biol Chem 2003; 278 : 34660–6. [Google Scholar]
  10. Seidler T, Miller SL, Loughrey CM, et al. Effects of adenovirus-mediated sorcin overexpression on excitation-contraction coupling in isolated rabbit cardiomyocytes. Circ Res 2003; 93 : 132–9. [Google Scholar]
  11. Terentyev D, Viatchenko-Karpinski S, Valdivia HH, et al. Luminal Ca2+ controls termination and refractory behavior of Ca2+-induced Ca2+ release in cardiac myocytes. Circ Res 2002; 91 : 414–20. [Google Scholar]
  12. Xu L, Mann G, Meissner G. Regulation of cardiac Ca2+ release channel (ryanodine receptor) by Ca2+, H+, Mg2+, and adenine nucleotides under normal and simulated ischemic conditions. Circ Res 1996; 79 : 1100–9. [Google Scholar]
  13. Xu L, Eu JP, Meissner G, Stamler JS. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 1998; 279 : 234–7. [Google Scholar]
  14. Zhang JZ, Wu Y, Williams BY, et al. Oxidation of the skeletal muscle Ca2+ release channel alters calmodulin binding. Am J Physiol 1999; 276 : C46–53. [Google Scholar]
  15. Zissimopoulos S, Docrat N, Lai FA. Redox sensitivity of the ryanodine receptor interaction with FK506-binding protein. J Biol Chem 2007; 282 : 6976–83. [Google Scholar]
  16. Callaway C, Seryshev A, Wang JP, et al. Localization of the high and low affinity 3Hryanodine binding sites on the skeletal muscle Ca2+ release channel. J Biol Chem 1994; 269 : 15876–84. [Google Scholar]
  17. Yano M, Kobayashi S, Kohno M, et al. FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation 2003; 107 : 477–84. [Google Scholar]
  18. Lehnart SE, Terrenoire C, Reiken S, et al. Stabilization of cardiac ryanodine receptor prevents intracellular calcium leak and arrhythmias. Proc Natl Acad Sci USA 2006; 103 : 7906–10. [Google Scholar]
  19. George CH, Jundi H, Thomas NL, et al. Ryanodine receptors and ventricular arrhythmias : emerging trends in mutations, mechanisms and therapies. J Mol Cell Cardiol 2007; 42 : 34–50. [Google Scholar]
  20. Priori SG, Napolitano C. Cardiac and skeletal muscle disorders caused by mutations in the intracellular Ca2+ release channels. J Clin Invest 2005; 115 : 2033–8. [Google Scholar]
  21. Pourrier M, Nattel S. Protéines d’ancrage et mort subite cardiaque : comment et pourquoi ? Med Sci (Paris) 2004; 20 : 437–41. [Google Scholar]
  22. Fernandez-Velasco M, Gomez AM, Richard S. Unzipping RyR2 in adult cardiomyocytes : getting closer to mechanisms of inherited ventricular arrhythmias ? Cardiovasc Res 2006; 70 : 407–9. [Google Scholar]
  23. Lehnart SE, Wehrens XH, Laitinen PJ, et al. Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak. Circulation 2004; 109 : 3208–14. [Google Scholar]
  24. Terentyev D, Nori A, Santoro M, et al. Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death. Circ Res 2006; 98 : 1151–8. [Google Scholar]
  25. Litwin SE, Zhang D, Bridge JH. Dyssynchronous Ca2+ sparks in myocytes from infarcted hearts. Circ Res 2000; 87 : 1040–7. [Google Scholar]
  26. Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor) : defective regulation in failing hearts. Cell 2000; 101 : 365–76. [Google Scholar]
  27. Doi M, Yano M, Kobayashi S, et al. Propranolol prevents the development of heart failure by restoring FKBP12.6-mediated stabilization of ryanodine receptor. Circulation 2002; 105 : 1374–9. [Google Scholar]
  28. Lehnart SE, Wehrens XH, Reiken S, et al. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 2005; 123 : 25–35. [Google Scholar]
  29. Benkusky NA, Weber CS, Scherman JA, et al. Intact beta-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor. Circ Res 2007; 101 : 819–29. [Google Scholar]
  30. Oestreich EA, Wang H, Malik S, et al. Epac-mediated activation of phospholipase C(epsilon) plays a critical role in beta-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes. J Biol Chem 2007; 282 : 5488–95. [Google Scholar]
  31. Pereira L, Metrich M, Fernandez-Velasco M, et al. The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. J Physiol 2007; 583 : 685–94. [Google Scholar]
  32. Bers DM. Calcium and cardiac rhythms : physiological and pathophysiological. Circ Res 2002; 90 : 14–7. [Google Scholar]
  33. Fauconnier J, Lacampagne A, Rauzier JM, et al. Frequency-dependent and proarrhythmogenic effects of FK-506 in rat ventricular cells. Am J Physiol Heart Circ Physiol 2005; 288 : H778–86. [Google Scholar]
  34. Fauconnier J, Lacampagne A, Rauzier JM, et al. Ca2+-dependent reduction of IK1 in rat ventricular cells : a novel paradigm for arrhythmia in heart failure ? Cardiovasc Res 2005; 68 : 204–12. [Google Scholar]
  35. Escande D. Aspects moléculaires de la mort subite de l’adulte. Med Sci (Paris) 2004; 20 : 623–5. [Google Scholar]
  36. Yamamoto T, Yano M, Xu X, et al. Identification of target domains of the cardiac ryanodine receptor to correct channel disorder in failing hearts. Circulation 2008; 117 : 762–72 [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.