Free Access
Issue
Med Sci (Paris)
Volume 24, Number 4, Avril 2008
Page(s) 407 - 414
Section M/S revues
DOI https://doi.org/10.1051/medsci/2008244407
Published online 15 April 2008
  1. Keller U. From obesity to diabetes. Int J Vitam Nutr Res 2006; 76 : 172–7. [Google Scholar]
  2. McGarry J. D. What if Minkowski had been ageusic ? An alternative angle on diabetes. Science 1992; 258 : 766–70. [Google Scholar]
  3. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; 1 : 785–9. [Google Scholar]
  4. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106 : 171–6. [Google Scholar]
  5. Zimmermann R, Strauss JG, Haemmerle G, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004; 306 : 1383–6. [Google Scholar]
  6. Londos C, Sztalryd C, Tansey JT, Kimmel AR. Role of PAT proteins in lipid metabolism. Biochimie 2005; 87 : 45–9. [Google Scholar]
  7. Tai ES, Ordovas JM. The role of perilipin in human obesity and insulin resistance. Curr Opin Lipidol 2007; 18 : 152–6. [Google Scholar]
  8. Vaughan M. The production and release of glycerol by adipose tissue incubated in vitro. J Biol Chem 1962; 237 : 3354–8. [Google Scholar]
  9. Tordjman J, Chauvet G, Quette J, et al. Thiazolidinediones block fatty acid release by inducing glyceroneogenesis in fat cells. J Biol Chem 2003; 278 : 18785–90. [Google Scholar]
  10. Leroyer SN, Tordjman J, Chauvet G, et al. Rosiglitazone controls fatty acid cycling in human adipose tissue by means of glyceroneogenesis and glycerol phosphorylation. J Biol Chem 2006; 281 : 13141–9. [Google Scholar]
  11. Ballard FJ, Hanson RW, Leveille GA. Phosphoenolpyruvate carboxykinase and the synthesis of glyceride-glycerol from pyruvate in adipose tissue. J Biol Chem 1967; 242 : 2746–50. [Google Scholar]
  12. Antras-Ferry J, Robin P, Robin D, Forest C. Fatty acids and fibrates are potent inducers of transcription of the phosphenolpyruvate carboxykinase gene in adipocytes. Eur J Biochem 1995; 234 : 390–6. [Google Scholar]
  13. Chakravarty K, Cassuto H, Reshef L, Hanson RW. Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C. Crit Rev Biochem Mol Biol 2005; 40 : 129–54. [Google Scholar]
  14. Tontonoz P, Hu E, Devine J, et al. PPAR gamma 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol 1995; 15 : 351–7. [Google Scholar]
  15. Devine JH, Eubank DW, Clouthier DE, et al. Adipose expression of the phosphoenolpyruvate carboxykinase promoter requires peroxisome proliferator-activated receptor gamma and 9-cis-retinoic acid receptor binding to an adipocyte-specific enhancer in vivo. J Biol Chem 1999; 274 : 13604–12. [Google Scholar]
  16. Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs : from orphan receptors to drug discovery. J Med Chem 2000; 43 : 527–50. [Google Scholar]
  17. Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101 : 1354–61. [Google Scholar]
  18. Crossno JT Jr, Majka SM, Grazia T, et al. Rosiglitazone promotes development of a novel adipocyte population from bone marrow-derived circulating progenitor cells. J Clin Invest 2006; 116 : 3220–8. [Google Scholar]
  19. Guerre-Millo M. Adipose tissue and adipokines : for better or worse. Diabetes Metab 2004; 30 : 13–9. [Google Scholar]
  20. Glorian M, Duplus E, Beale EG, et al. A single element in the phosphoenolpyruvate carboxykinase gene mediates thiazolidinedione action specifically in adipocytes. Biochimie 2001; 83 : 933–43. [Google Scholar]
  21. Duplus E, Benelli C, Reis AF, et al. Expression of phosphoenolpyruvate carboxykinase gene in human adipose tissue : induction by rosiglitazone and genetic analyses of the adipocyte-specific region of the promoter in type 2 diabetes. Biochimie 2003; 85 : 1257–64. [Google Scholar]
  22. Hallakou S, Doare L, Foufelle F, et al. Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes 1997; 46 : 1393–9. [Google Scholar]
  23. Cadoudal T, Blouin JM, Collinet M, et al. Acute and selective regulation of glyceroneogenesis and cytosolic phosphoenolpyruvate carboxykinase in adipose tissue by thiazolidinediones in type 2 diabetes. Diabetologia 2007; 50 : 666–75. [Google Scholar]
  24. Boden G, Homko C, Mozzoli M, et al. Thiazolidinediones upregulate fatty acid uptake and oxidation in adipose tissue of diabetic patients. Diabetes 2005; 54 : 880–5. [Google Scholar]
  25. Davies GF, Khandelwal RL, Wu L, et al. Inhibition of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by troglitazone : a peroxisome proliferator-activated receptor-gamma (PPARgamma)-independent, antioxidant-related mechanism. Biochem Pharmacol 2001; 62 : 1071–9. [Google Scholar]
  26. Guan HP, Li Y, Jensen MV, et al. A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat Med 2002; 8 : 1122–8. [Google Scholar]
  27. Tan GD, Debard C, Tiraby C, et al. A “futile cycle” induced by thiazolidinediones in human adipose tissue ? Nat Med 2003; 9 : 811–2. [Google Scholar]
  28. Franckhauser S, Antras-Ferry J, Robin P, et al. Expression of the phosphoenolpyruvate carboxykinase gene in 3T3-F442A adipose cells : opposite effects of dexamethasone and isoprenaline on transcription. Biochem J 1995; 305 : 65–71. [Google Scholar]
  29. Duplus E, Glorian M, Tordjman J, et al. Evidence for selective induction of phosphoenolpyruvate carboxykinase gene expression by unsaturated and nonmetabolized fatty acids in adipocytes. J Cell Biochem 2002; 85 : 651–61. [Google Scholar]
  30. Duplus E, Forest C. Is there a single mechanism for fatty acid regulation of gene transcription ? Biochem Pharmacol 2002; 64 : 893–901. [Google Scholar]
  31. Bogacka I, Xie H, Bray GA, Smith SR. The effect of pioglitazone on peroxisome proliferator-activated receptor-gamma target genes related to lipid storage in vivo. Diabetes Care 2004; 27 : 1660–7. [Google Scholar]
  32. El Hani H, Zouali H, Philippi A, et al. Indication for genetic linkage of the phosphoenolpyruvate carboxykinase (PCK1) gene region on chromosome 20q to non-insulin-dependent diabetes mellitus. Diabetes Metab 1996; 22 : 451–4. [Google Scholar]
  33. Cao H, Van der Veer E, Ban BR, et al. Promoter polymorphism in PCK1 (phosphoenolpyruvate carboxykinase gene) associated with type 2 diabetes mellitus. J Clin Endocrinol Metab 2004; 89 : 898–903. [Google Scholar]
  34. Hakimi P, Yang J, Casadesus G, et al. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 2007; 282 : 328–44. [Google Scholar]
  35. Girard J. Rôle des acides gras libres dans la sécrétion et l’action de l’insuline : mécanismes de la lipotoxicité. Med Sci (Paris) 2003; 19 : 827–33. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.