Accès gratuit
Numéro
Med Sci (Paris)
Volume 24, Numéro 4, Avril 2008
Page(s) 407 - 414
Section M/S revues
DOI https://doi.org/10.1051/medsci/2008244407
Publié en ligne 15 avril 2008
  1. Keller U. From obesity to diabetes. Int J Vitam Nutr Res 2006; 76 : 172–7. [Google Scholar]
  2. McGarry J. D. What if Minkowski had been ageusic ? An alternative angle on diabetes. Science 1992; 258 : 766–70. [Google Scholar]
  3. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; 1 : 785–9. [Google Scholar]
  4. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106 : 171–6. [Google Scholar]
  5. Zimmermann R, Strauss JG, Haemmerle G, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004; 306 : 1383–6. [Google Scholar]
  6. Londos C, Sztalryd C, Tansey JT, Kimmel AR. Role of PAT proteins in lipid metabolism. Biochimie 2005; 87 : 45–9. [Google Scholar]
  7. Tai ES, Ordovas JM. The role of perilipin in human obesity and insulin resistance. Curr Opin Lipidol 2007; 18 : 152–6. [Google Scholar]
  8. Vaughan M. The production and release of glycerol by adipose tissue incubated in vitro. J Biol Chem 1962; 237 : 3354–8. [Google Scholar]
  9. Tordjman J, Chauvet G, Quette J, et al. Thiazolidinediones block fatty acid release by inducing glyceroneogenesis in fat cells. J Biol Chem 2003; 278 : 18785–90. [Google Scholar]
  10. Leroyer SN, Tordjman J, Chauvet G, et al. Rosiglitazone controls fatty acid cycling in human adipose tissue by means of glyceroneogenesis and glycerol phosphorylation. J Biol Chem 2006; 281 : 13141–9. [Google Scholar]
  11. Ballard FJ, Hanson RW, Leveille GA. Phosphoenolpyruvate carboxykinase and the synthesis of glyceride-glycerol from pyruvate in adipose tissue. J Biol Chem 1967; 242 : 2746–50. [Google Scholar]
  12. Antras-Ferry J, Robin P, Robin D, Forest C. Fatty acids and fibrates are potent inducers of transcription of the phosphenolpyruvate carboxykinase gene in adipocytes. Eur J Biochem 1995; 234 : 390–6. [Google Scholar]
  13. Chakravarty K, Cassuto H, Reshef L, Hanson RW. Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C. Crit Rev Biochem Mol Biol 2005; 40 : 129–54. [Google Scholar]
  14. Tontonoz P, Hu E, Devine J, et al. PPAR gamma 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol 1995; 15 : 351–7. [Google Scholar]
  15. Devine JH, Eubank DW, Clouthier DE, et al. Adipose expression of the phosphoenolpyruvate carboxykinase promoter requires peroxisome proliferator-activated receptor gamma and 9-cis-retinoic acid receptor binding to an adipocyte-specific enhancer in vivo. J Biol Chem 1999; 274 : 13604–12. [Google Scholar]
  16. Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs : from orphan receptors to drug discovery. J Med Chem 2000; 43 : 527–50. [Google Scholar]
  17. Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101 : 1354–61. [Google Scholar]
  18. Crossno JT Jr, Majka SM, Grazia T, et al. Rosiglitazone promotes development of a novel adipocyte population from bone marrow-derived circulating progenitor cells. J Clin Invest 2006; 116 : 3220–8. [Google Scholar]
  19. Guerre-Millo M. Adipose tissue and adipokines : for better or worse. Diabetes Metab 2004; 30 : 13–9. [Google Scholar]
  20. Glorian M, Duplus E, Beale EG, et al. A single element in the phosphoenolpyruvate carboxykinase gene mediates thiazolidinedione action specifically in adipocytes. Biochimie 2001; 83 : 933–43. [Google Scholar]
  21. Duplus E, Benelli C, Reis AF, et al. Expression of phosphoenolpyruvate carboxykinase gene in human adipose tissue : induction by rosiglitazone and genetic analyses of the adipocyte-specific region of the promoter in type 2 diabetes. Biochimie 2003; 85 : 1257–64. [Google Scholar]
  22. Hallakou S, Doare L, Foufelle F, et al. Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes 1997; 46 : 1393–9. [Google Scholar]
  23. Cadoudal T, Blouin JM, Collinet M, et al. Acute and selective regulation of glyceroneogenesis and cytosolic phosphoenolpyruvate carboxykinase in adipose tissue by thiazolidinediones in type 2 diabetes. Diabetologia 2007; 50 : 666–75. [Google Scholar]
  24. Boden G, Homko C, Mozzoli M, et al. Thiazolidinediones upregulate fatty acid uptake and oxidation in adipose tissue of diabetic patients. Diabetes 2005; 54 : 880–5. [Google Scholar]
  25. Davies GF, Khandelwal RL, Wu L, et al. Inhibition of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by troglitazone : a peroxisome proliferator-activated receptor-gamma (PPARgamma)-independent, antioxidant-related mechanism. Biochem Pharmacol 2001; 62 : 1071–9. [Google Scholar]
  26. Guan HP, Li Y, Jensen MV, et al. A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat Med 2002; 8 : 1122–8. [Google Scholar]
  27. Tan GD, Debard C, Tiraby C, et al. A “futile cycle” induced by thiazolidinediones in human adipose tissue ? Nat Med 2003; 9 : 811–2. [Google Scholar]
  28. Franckhauser S, Antras-Ferry J, Robin P, et al. Expression of the phosphoenolpyruvate carboxykinase gene in 3T3-F442A adipose cells : opposite effects of dexamethasone and isoprenaline on transcription. Biochem J 1995; 305 : 65–71. [Google Scholar]
  29. Duplus E, Glorian M, Tordjman J, et al. Evidence for selective induction of phosphoenolpyruvate carboxykinase gene expression by unsaturated and nonmetabolized fatty acids in adipocytes. J Cell Biochem 2002; 85 : 651–61. [Google Scholar]
  30. Duplus E, Forest C. Is there a single mechanism for fatty acid regulation of gene transcription ? Biochem Pharmacol 2002; 64 : 893–901. [Google Scholar]
  31. Bogacka I, Xie H, Bray GA, Smith SR. The effect of pioglitazone on peroxisome proliferator-activated receptor-gamma target genes related to lipid storage in vivo. Diabetes Care 2004; 27 : 1660–7. [Google Scholar]
  32. El Hani H, Zouali H, Philippi A, et al. Indication for genetic linkage of the phosphoenolpyruvate carboxykinase (PCK1) gene region on chromosome 20q to non-insulin-dependent diabetes mellitus. Diabetes Metab 1996; 22 : 451–4. [Google Scholar]
  33. Cao H, Van der Veer E, Ban BR, et al. Promoter polymorphism in PCK1 (phosphoenolpyruvate carboxykinase gene) associated with type 2 diabetes mellitus. J Clin Endocrinol Metab 2004; 89 : 898–903. [Google Scholar]
  34. Hakimi P, Yang J, Casadesus G, et al. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 2007; 282 : 328–44. [Google Scholar]
  35. Girard J. Rôle des acides gras libres dans la sécrétion et l’action de l’insuline : mécanismes de la lipotoxicité. Med Sci (Paris) 2003; 19 : 827–33. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.