Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 11, Novembre 2015
Page(s) 989 - 995
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153111013
Publié en ligne 17 novembre 2015
  1. Azzi S, Gavard J. Vaisseaux sanguins et tumeurs ou l’art du dialogue. Med Sci (Paris) 2014 ; 30 : 408–414. [CrossRef] [EDP Sciences] [PubMed]
  2. Wacker A, Gerhardt H. Endothelial development taking shape. Curr Opin Cell Biol 2011 ; 23 : 676–685. [PubMed]
  3. Hellstrom M, Phng LK, Hofmann JJ, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 2007 ; 445 : 776–780. [CrossRef] [PubMed]
  4. Suchting S, Freitas C, le Noble F, et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA 2007 ; 104 : 3225–3230. [CrossRef]
  5. Jakobsson L, Franco CA, Bentley K, et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 2010 ; 12 : 943–953. [CrossRef] [PubMed]
  6. Tammela T, Zarkada G, Wallgard E, et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 2008 ; 454 : 656–660. [CrossRef] [PubMed]
  7. Phng LK, Stanchi F, Gerhardt H. Filopodia are dispensable for endothelial tip cell guidance. Development 2013 ; 140 : 4031–4040. [CrossRef] [PubMed]
  8. Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 2006 ; 8 : 1223–1234. [CrossRef] [PubMed]
  9. Le Guelte A, Galan-Moya EM, Dwyer J, et al. Semaphorin 3A elevates endothelial cell permeability through PP2A inactivation. J Cell Sci 2012 ; 125 : 4137–4146. [CrossRef] [PubMed]
  10. Dwyer J, Hebda JK, Le Guelte A, et al. Glioblastoma cell-secreted interleukin-8 induces brain endothelial cell permeability via CXCR2. PLoS One 2012 ; 7 : e45562. [CrossRef] [PubMed]
  11. Bentley K, Franco CA, Philippides A, et al. The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat Cell Biol 2014 ; 16 : 309–321. [CrossRef] [PubMed]
  12. De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 2013 ; 154 : 651–663. [CrossRef] [PubMed]
  13. Iruela-Arispe ML, Davis GE. Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 2009 ; 16 : 222–231. [CrossRef] [PubMed]
  14. Zovein AC, Luque A, Turlo KA, et al. Beta1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev Cell 2010 ; 18 : 39–51. [CrossRef] [PubMed]
  15. Gavard J, Patel V, Gutkind JS. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell 2008 ; 14 : 25–36. [CrossRef] [PubMed]
  16. Fukuhara S, Sako K, Minami T, et al. Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol 2008 ; 10 : 513–526. [CrossRef] [PubMed]
  17. Ricard N, Simons M. When it is better to regress: dynamics of vascular pruning. PLoS Biol 2015 ; 13 : e1002148. [CrossRef] [PubMed]
  18. Folkman J. Angiogenesis. Annu Rev Med 2006 ; 57 : 1–18. [CrossRef] [PubMed]
  19. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed]
  20. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011 ; 473 : 298–307. [CrossRef] [PubMed]
  21. Azzi S, Hebda JK, Gavard J. Vascular permeability and drug delivery in cancers. Front Oncol 2013 ; 3 : 211. [CrossRef] [PubMed]
  22. Dreher MR, Liu W, Michelich CR, et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 2006 ; 98 : 335–344. [CrossRef] [PubMed]
  23. Inai T, Mancuso M, Hashizume H, et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 2004 ; 165 : 35–52. [CrossRef] [PubMed]
  24. Sapieha P, Zaniolo K, Hamel D, et al. L’offre et la demande : l’influence du métabolisme énergétique sur l’angiogenèse. Med Sci (Paris) 2009 ; 25 : 346–348. [CrossRef] [EDP Sciences] [PubMed]
  25. Gothie E, Pouyssegur J. HIF-1: régulateur central de l’hypoxie. Med Sci (Paris) 2002 ; 18 : 70–78. [CrossRef] [EDP Sciences]
  26. Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007 ; 11 : 69–82. [CrossRef] [PubMed]
  27. Galan-Moya EM, Le Guelte A, Fernandes EL, et al. Secreted factors from brain endothelial cells maintain glioblastoma stem-like cell expansion through the mTOR pathway. EMBO Rep 2011 ; 12 : 470–476. [CrossRef] [PubMed]
  28. Paez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009 ; 15 : 220–231. [CrossRef] [PubMed]
  29. Ebos JM, Lee CR, Cruz-Munoz W, et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 2009 ; 15 : 232–239. [CrossRef] [PubMed]
  30. Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 2011 ; 10 : 417–427. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.