Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 11, Novembre 2015
Page(s) 979 - 988
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153111012
Publié en ligne 17 novembre 2015
  1. Galic MA, Riazi K, Pittman QJ. Cytokines and brain excitability. Front Neuroendocrinol 2012 ; 33 : 116–125. [CrossRef] [PubMed]
  2. Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol 2007 ; 28 : 12–18. [CrossRef]
  3. Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology 2010 ; 129 : 154–169. [CrossRef] [PubMed]
  4. Lee H, Lee S, Cho IH, Lee SJ. Toll-like receptors: sensor molecules for detecting damage to the nervous system. Curr Prot Pept Sci 2013 ; 14 : 33–42. [CrossRef]
  5. Tang D, Kang R, Coyne CB, et al. PAMPs and DAMPs : signal 0s that spur autophagy and immunity. Immunol Rev 2012 ; 249 : 158–175. [CrossRef] [PubMed]
  6. Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. Glia 2013 ; 61 : 71–90. [CrossRef] [PubMed]
  7. Gomez Perdiguero E, Klapproth K, Schulz C, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015 ; 518 : 547–551. [CrossRef] [PubMed]
  8. Ajami B, Bennett JL, Krieger C, et al. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 2007 ; 10 : 1538–1543. [CrossRef] [PubMed]
  9. Chen SK, Tvrdik P, Peden E, et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 2010 ; 141 : 775–785. [CrossRef] [PubMed]
  10. Tremblay ME, Stevens B, Sierra A, et al. The role of microglia in the healthy brain. J Neurosci 2011 ; 31 : 16064–16069. [CrossRef] [PubMed]
  11. Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 2011 ; 12 : 367–387. [CrossRef]
  12. Boche D, Perry VH, Nicoll JAR. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 2013 ; 39 : 3–18. [CrossRef] [PubMed]
  13. Eggen BJL, Raj D, Hanisch UK, Boddeke HWGM. Microglial phenotype and adaptation. J Neuroimmunol Pharmacol 2013 ; 8 : 807–823. [CrossRef]
  14. Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 2013 ; 39 : 19–34. [CrossRef] [PubMed]
  15. Suzumura A. Neuron-microglia interaction in neuroinflammation. Curr Prot Pept Sci 2013 ; 14 : 16–20. [CrossRef]
  16. Ménager P, Roux P, Mégret F, et al. Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri bodies. PLoS Pathog 2009 ; 5 : e1000315. [CrossRef] [PubMed]
  17. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Trans Med 2012 ; 4 : 147ra111. [CrossRef]
  18. Bélanger M, Magistretti PJ. The role of astroglia in neuroprotection. Dialogues Clin Neurosci 2009 ; 11 : 281–295. [PubMed]
  19. Nedergaard M, Verkhratsky A. Artifact versus reality: how astrocytes contribute to synaptic events. Glia 2012 ; 60 : 1013–1023. [CrossRef] [PubMed]
  20. Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007 ; 28 : 138–145. [CrossRef]
  21. Gimsa U, Mitchison NA, Brunner-Weinzierl MC. Immune privilege as an intrinsic CNS property: astrocytes protect the CNS against T-cell-mediated neuroinflammation. Mediators Inflamm 2013 ; 2013 : 320519. [CrossRef] [PubMed]
  22. Jäger A, Dardalhon V, Sobel RA, et al. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol 2009 ; 183 : 7169–7177. [CrossRef]
  23. Müller FJ, Snyder EY, Loring JF. Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 2006 ; 1 : 75–84. [CrossRef]
  24. Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001 ; 81 : 871–927. [PubMed]
  25. Wake H, Lee PR, Fields RD. Control of local protein synthesis and initial events in myelination by action potentials. Science 2011 ; 333 : 1647–1651. [CrossRef] [PubMed]
  26. Frühbeis C, Fröhlich D, Kuo WP, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol 2013 ; 11 : e1001604. [CrossRef] [PubMed]
  27. Ousman SS, Kubes P. Immune surveillance in the central nervous system. Nat Neurosci 2013 ; 15 : 1096–1101. [CrossRef]
  28. Reboldi A, Coisne C, Baumjohann D, et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 2009 ; 10 : 514–523. [CrossRef] [PubMed]
  29. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015 ; 523 : 337–341. [CrossRef] [PubMed]
  30. Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 2015 ; 212 : 991–999. [CrossRef] [PubMed]
  31. Bechmann I, Galea I, Perry VH. What is the blood-brain barrier (not)? Trends Immunol 2007 ; 28 : 5–11. [CrossRef]
  32. Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012 ; 12 : 623–635. [CrossRef] [PubMed]
  33. Carare RO, Hawkes CA, Weller RO. Afferent and efferent immunological pathways of the brain. Anatomy, function and failure. Brain Behav Immun 2013 ; 59 : 11–14.
  34. Takeshita Y, Ransohoff RM. Inflammatory cell-trafficking across the blood-brain barrier: chemokine regulation and in vitro models. Immunol Rev 2012 ; 248 : 228–239. [CrossRef] [PubMed]
  35. Lampron A, Elali A, Rivest S. Innate immunity in the CNS: redefining the relationship between the CNS and its environment. Neuron 2013 ; 78 : 214–232. [CrossRef] [PubMed]
  36. Nagajima K, Kohsaka S. Microglia: neuroprotective and neurotrophic cells in the central nervous system. Curr Drug Targets Cardiovasc Haematol Disord 2004 ; 4 : 65–84. [CrossRef] [PubMed]
  37. Rawji KS, Yong VW. The benefits and detriments of microphages/microglia in models of multiple sclerosis. Clin Dev Immunol 2013 ; 2013 : 948976. [CrossRef] [PubMed]
  38. Hanamsagar R, Hanke ML, Kielian T. Toll-like receptor (TLR) and inflammasome action in the central nervous system. Trends Immunol 2012 ; 33 : 333–342. [CrossRef]
  39. McPherson RC, Anderton MC. Adaptive immune responses in CNS autoimmune disease: mechanisms and therapeutic opportunities. J Neuroimmune Pharmacol 2013 ; 8 : 774–790. [CrossRef] [PubMed]
  40. Audinat E, Arnoux I. La microglie : des cellules immunitaires qui sculptent et contrôlent les synapses neuronales. Med Sci (Paris) 2014 ; 30 : 153–159. [CrossRef] [EDP Sciences] [PubMed]
  41. Le Louveau A. drainage lymphatique cérébral : implication dans la tolérance immunitaire. Med Sci (Paris) 2015 ; 31 : 953–956. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.