Free Access
Issue
Med Sci (Paris)
Volume 31, Number 11, Novembre 2015
Page(s) 971 - 978
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153111011
Published online 17 November 2015
  1. Erb-Downward JR, Thompson DL, Han MK, et al. Analysis of the lung microbiome in the healthy smoker and in COPD. PLoS One 2011 ; 6 : e16384. [CrossRef] [PubMed] [Google Scholar]
  2. Dickson RP, Erb-Downward JR, Huffnagle GB. The role of the bacterial microbiome in lung disease. Expert Rev Respir Med 2013 ; 7 : 245–257. [CrossRef] [PubMed] [Google Scholar]
  3. Marsland BJ, Gollwitzer ES. Host-microorganism interactions in lung diseases. Nat Rev Immunol 2014 ; 14 : 827–835. [CrossRef] [PubMed] [Google Scholar]
  4. Charlson ES, Bittinger K, Haas AR, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 2011 ; 184 : 957–963. [CrossRef] [PubMed] [Google Scholar]
  5. Morris A, Beck JM, Schloss PD, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 2013 ; 187 : 1067–1075. [CrossRef] [PubMed] [Google Scholar]
  6. Bouladoux N, Hand TW, Naik S, Belkaid Y. Microbiote et lymphocytes T : les meilleurs ennemis. Med Sci (Paris) 2013 ; 29 : 349–352. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Sze MA, Hogg JC, Sin DD. Bacterial microbiome of lungs in COPD. Int J Chron Obstruct Pulmon Dis 2014 ; 9 : 229–238. [PubMed] [Google Scholar]
  8. Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS One 2010 ; 5 : e8578. [CrossRef] [PubMed] [Google Scholar]
  9. Zemanick ET, Harris JK, Wagner BD, et al. Inflammation and airway microbiota during cystic fibrosis pulmonary exacerbations. PLoS One 2013 ; 8 : e62917. [CrossRef] [PubMed] [Google Scholar]
  10. Tunney MM, Einarsson GG, Wei L, et al. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am J Respir Crit Care Med 2013 ; 187 : 1118–1126. [CrossRef] [PubMed] [Google Scholar]
  11. Delhaes L, Monchy S, Fréalle E, et al. The airway microbiota in cystic fibrosis: a complex fungal and bacterial community. Implications for therapeutic management. PLoS One 2012 ; 7 : e36313. [CrossRef] [Google Scholar]
  12. Harrison MJ, Twomey KB, McCarthy Y, et al. The role of second-generation sequencing in describing the fungal microbiota in the adult cystic fibrosis (CF) airway and its correlation with clinical phenotype. J Cyst Fibros 2013 ; 12 : S16. [CrossRef] [Google Scholar]
  13. Madan JC, Koestler DC, Stanton BA, et al. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. MBio 2012 ; 3 : e00251–e00212. [CrossRef] [Google Scholar]
  14. Lim YW, Evangelista JS 3rd, Schmieder R, et al. Clinical insights from metagenomic analysis of cystic fibrosis sputum. J Clin Microbiol 2014 ; 52 : 425–437. [CrossRef] [PubMed] [Google Scholar]
  15. Zhao J, Schloss PD, Kalikin LM, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci USA 2012 ; 109 : 5809–5814. [CrossRef] [Google Scholar]
  16. Van der Gast CJ, Walker AW, Stressmann FA, et al. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J 2011 ; 5 : 780–791. [CrossRef] [PubMed] [Google Scholar]
  17. Cox MJ, Allgaier M, Taylor B, et al. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS One 2010 ; 5 : e11044. [CrossRef] [PubMed] [Google Scholar]
  18. Goddard AF, Staudinger BJ, Dowd SE, et al. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc Natl Acad Sci USA 2012 ; 109 : 13769–13774. [CrossRef] [Google Scholar]
  19. Fodor AA, Klem ER, Gilpin DF, et al. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations. PLoS One 2012 ; 7 : e45001. [CrossRef] [PubMed] [Google Scholar]
  20. Maughan H, Wang PW, Diaz Caballero J, et al. Analysis of the cystic fibrosis lung microbiota via serial Illumina sequencing of bacterial 16S rRNA hypervariable regions. PLoS One 2012 ; 7 : e45791. [CrossRef] [PubMed] [Google Scholar]
  21. LiPuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 2010 ; 23 : 299–323. [CrossRef] [PubMed] [Google Scholar]
  22. Zakharkina T, Heinzel E, Koczulla RA, et al. Analysis of the airway microbiota of healthy individuals and patients with chronic obstructive pulmonary disease by T-RFLP and clone sequencing. PLoS One 2013 ; 8 : E68302. [CrossRef] [PubMed] [Google Scholar]
  23. Goleva E, Jackson LP, Harris JK, et al. The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med 2013 ; 188 : 1193–1201. [CrossRef] [PubMed] [Google Scholar]
  24. Huang JY, Sethi S, Murphy T, et al. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol 2014 ; 52 : 2813–2823. [CrossRef] [PubMed] [Google Scholar]
  25. Weinreich UM, Korsgaard J. Bacterial colonisation of lower airways in health and chronic lung disease. Clin Respir J 2008 ; 2 : 116–122. [CrossRef] [PubMed] [Google Scholar]
  26. Ramsey KA, Ranganathan S, Park J, et al. Early respiratory infection is associated with reduced spirometry in children with cystic fibrosis. Am J Respir Crit Care Med 2014 ; 190 : 1111–1116. [CrossRef] [PubMed] [Google Scholar]
  27. Marri PR, Stern DA, Wright AL, et al. Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol 2013 ; 131 : 346–352. [CrossRef] [PubMed] [Google Scholar]
  28. Rogers GB, Hoffman LR, Carroll MP, Bruce KD. Interpreting infective microbiota: the importance of an ecological perspective. Trends Microbiol 2013 ; 21 : 271–276. [CrossRef] [PubMed] [Google Scholar]
  29. Sethi S. Infection as comorbidity of COPD. Eur Respir J 2010 ; 35 : 1209–1215. [CrossRef] [PubMed] [Google Scholar]
  30. Heijink IH, Brandenurg SM, Postma DS, van Oosterhout AJ. Cigarette smoke impairs airway epithelial barrier function and cell-cell contact recovery. Eur Respir J 2012 ; 39 : 419–428. [CrossRef] [PubMed] [Google Scholar]
  31. Pauly JL, Paszkiewicz G. Cigarette smoke, bacteria, mold, microbial toxins, and chronic lung inflammation. J Oncol 2011 ; 2011 : 81929. [CrossRef] [Google Scholar]
  32. Huang YJ, Kim E, Cox MJ, et al. A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbation. OMICS 2010 ; 14 : 9–59. [CrossRef] [Google Scholar]
  33. Sze MA, Dimitriu PA, Hayashi S, et al. The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012 ; 185 : 1073–1080. [CrossRef] [PubMed] [Google Scholar]
  34. Molyneaux PL, Mallia P, Cox MJ, et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstuctrive pulmonary disease. Am J Respir Crit Care Med 2013 ; 188 : 1224–1231. [CrossRef] [PubMed] [Google Scholar]
  35. Braun-Fahrlander C, Riedler J, Herz U, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 2002 ; 347 : 869–877. [CrossRef] [PubMed] [Google Scholar]
  36. Fyhrquist N, Ruokolainen L, Suomalainen A, et al. Acinetobacter species in the skin microbiota protects against allergic sensitization and inflammation. J Allergy Clin Immunol 2014 ; 134 : 1301–1309. [CrossRef] [PubMed] [Google Scholar]
  37. Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014 ; 20 : 159–166. [CrossRef] [PubMed] [Google Scholar]
  38. Schram-Bijkerk D, Doekes G, Douwes J, et al. Bacterial and fungal agents in house dust and wheeze in children: the PARSIFAL study. Clin Exp Allergy 2005 ; 35 : 1272–1278. [CrossRef] [PubMed] [Google Scholar]
  39. Ege MJ, Mayer M, Normand AC, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med 2011 ; 364 : 701–709. [CrossRef] [PubMed] [Google Scholar]
  40. Freymuth F, Vabret A, Dina J, et al. Les virus des bronchiolites aiguës. Arch Pediatr 2010 ; 17 : 1192–1201. [CrossRef] [PubMed] [Google Scholar]
  41. Sigurs N, Aljassim F, Kjellman B, et al. Asthma and allergy patterns over 18 years after severe RSV bronchiolitis in the first year of life. Thorax 2010 ; 65 : 1045–1052. [CrossRef] [PubMed] [Google Scholar]
  42. Bacharier LB, Cohen R, Schweiger T, et al. Determinants of asthma after severe respiratory syncytial virus bronchiolitis. J Allergy Clin Immunol 2012 ; 130 : 91–100. [CrossRef] [PubMed] [Google Scholar]
  43. Nagayama Y, Tsubaki T, Nakayama S, et al. Bacterial colonization in respiratory secretions from acute and recurrent wheezing infants and children. Pediatr Allergy Immunol 2007 ; 18 : 110–117. [CrossRef] [PubMed] [Google Scholar]
  44. Zhang Q, Illing R, Hui CK, et al. Bacteria in sputum of stable severe asthma and increased airway wall thickness. Respir Res 2012 ; 13 : 35. [CrossRef] [PubMed] [Google Scholar]
  45. Bisgaard H, Hermansen MN, Buchvald F, et al. Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med 2007 ; 357 : 1487–1495. [CrossRef] [PubMed] [Google Scholar]
  46. Whiteson KL, Bailey B, Bergkessel M, et al. The upper respiratory tract as a microbial source for pulmonary infections in cystic fibrosis. Parallels from island biogeography. Am J Respir Crit Care Med 2014 ; 189 : 1309–1315. [CrossRef] [PubMed] [Google Scholar]
  47. Nguyen L, Delhaes L. Un nouveau concept : le mycobiome pulmonaire. Med Sci (Paris) 2015 ; 31 : 945–947. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Brégeon F, Rolain JM. Le résistome pulmonaire. Med Sci (Paris) 2015 ; 31 : 947–950. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.