Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 11, Novembre 2015
Page(s) 971 - 978
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153111011
Publié en ligne 17 novembre 2015
  1. Erb-Downward JR, Thompson DL, Han MK, et al. Analysis of the lung microbiome in the healthy smoker and in COPD. PLoS One 2011 ; 6 : e16384. [CrossRef] [PubMed]
  2. Dickson RP, Erb-Downward JR, Huffnagle GB. The role of the bacterial microbiome in lung disease. Expert Rev Respir Med 2013 ; 7 : 245–257. [CrossRef] [PubMed]
  3. Marsland BJ, Gollwitzer ES. Host-microorganism interactions in lung diseases. Nat Rev Immunol 2014 ; 14 : 827–835. [CrossRef] [PubMed]
  4. Charlson ES, Bittinger K, Haas AR, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 2011 ; 184 : 957–963. [CrossRef] [PubMed]
  5. Morris A, Beck JM, Schloss PD, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 2013 ; 187 : 1067–1075. [CrossRef] [PubMed]
  6. Bouladoux N, Hand TW, Naik S, Belkaid Y. Microbiote et lymphocytes T : les meilleurs ennemis. Med Sci (Paris) 2013 ; 29 : 349–352. [CrossRef] [EDP Sciences] [PubMed]
  7. Sze MA, Hogg JC, Sin DD. Bacterial microbiome of lungs in COPD. Int J Chron Obstruct Pulmon Dis 2014 ; 9 : 229–238. [PubMed]
  8. Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS One 2010 ; 5 : e8578. [CrossRef] [PubMed]
  9. Zemanick ET, Harris JK, Wagner BD, et al. Inflammation and airway microbiota during cystic fibrosis pulmonary exacerbations. PLoS One 2013 ; 8 : e62917. [CrossRef] [PubMed]
  10. Tunney MM, Einarsson GG, Wei L, et al. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am J Respir Crit Care Med 2013 ; 187 : 1118–1126. [CrossRef] [PubMed]
  11. Delhaes L, Monchy S, Fréalle E, et al. The airway microbiota in cystic fibrosis: a complex fungal and bacterial community. Implications for therapeutic management. PLoS One 2012 ; 7 : e36313. [CrossRef]
  12. Harrison MJ, Twomey KB, McCarthy Y, et al. The role of second-generation sequencing in describing the fungal microbiota in the adult cystic fibrosis (CF) airway and its correlation with clinical phenotype. J Cyst Fibros 2013 ; 12 : S16. [CrossRef]
  13. Madan JC, Koestler DC, Stanton BA, et al. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. MBio 2012 ; 3 : e00251–e00212. [CrossRef]
  14. Lim YW, Evangelista JS 3rd, Schmieder R, et al. Clinical insights from metagenomic analysis of cystic fibrosis sputum. J Clin Microbiol 2014 ; 52 : 425–437. [CrossRef] [PubMed]
  15. Zhao J, Schloss PD, Kalikin LM, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci USA 2012 ; 109 : 5809–5814. [CrossRef]
  16. Van der Gast CJ, Walker AW, Stressmann FA, et al. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J 2011 ; 5 : 780–791. [CrossRef] [PubMed]
  17. Cox MJ, Allgaier M, Taylor B, et al. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS One 2010 ; 5 : e11044. [CrossRef] [PubMed]
  18. Goddard AF, Staudinger BJ, Dowd SE, et al. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc Natl Acad Sci USA 2012 ; 109 : 13769–13774. [CrossRef]
  19. Fodor AA, Klem ER, Gilpin DF, et al. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations. PLoS One 2012 ; 7 : e45001. [CrossRef] [PubMed]
  20. Maughan H, Wang PW, Diaz Caballero J, et al. Analysis of the cystic fibrosis lung microbiota via serial Illumina sequencing of bacterial 16S rRNA hypervariable regions. PLoS One 2012 ; 7 : e45791. [CrossRef] [PubMed]
  21. LiPuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 2010 ; 23 : 299–323. [CrossRef] [PubMed]
  22. Zakharkina T, Heinzel E, Koczulla RA, et al. Analysis of the airway microbiota of healthy individuals and patients with chronic obstructive pulmonary disease by T-RFLP and clone sequencing. PLoS One 2013 ; 8 : E68302. [CrossRef] [PubMed]
  23. Goleva E, Jackson LP, Harris JK, et al. The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med 2013 ; 188 : 1193–1201. [CrossRef] [PubMed]
  24. Huang JY, Sethi S, Murphy T, et al. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol 2014 ; 52 : 2813–2823. [CrossRef] [PubMed]
  25. Weinreich UM, Korsgaard J. Bacterial colonisation of lower airways in health and chronic lung disease. Clin Respir J 2008 ; 2 : 116–122. [CrossRef] [PubMed]
  26. Ramsey KA, Ranganathan S, Park J, et al. Early respiratory infection is associated with reduced spirometry in children with cystic fibrosis. Am J Respir Crit Care Med 2014 ; 190 : 1111–1116. [CrossRef] [PubMed]
  27. Marri PR, Stern DA, Wright AL, et al. Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol 2013 ; 131 : 346–352. [CrossRef] [PubMed]
  28. Rogers GB, Hoffman LR, Carroll MP, Bruce KD. Interpreting infective microbiota: the importance of an ecological perspective. Trends Microbiol 2013 ; 21 : 271–276. [CrossRef] [PubMed]
  29. Sethi S. Infection as comorbidity of COPD. Eur Respir J 2010 ; 35 : 1209–1215. [CrossRef] [PubMed]
  30. Heijink IH, Brandenurg SM, Postma DS, van Oosterhout AJ. Cigarette smoke impairs airway epithelial barrier function and cell-cell contact recovery. Eur Respir J 2012 ; 39 : 419–428. [CrossRef] [PubMed]
  31. Pauly JL, Paszkiewicz G. Cigarette smoke, bacteria, mold, microbial toxins, and chronic lung inflammation. J Oncol 2011 ; 2011 : 81929. [CrossRef]
  32. Huang YJ, Kim E, Cox MJ, et al. A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbation. OMICS 2010 ; 14 : 9–59. [CrossRef]
  33. Sze MA, Dimitriu PA, Hayashi S, et al. The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012 ; 185 : 1073–1080. [CrossRef] [PubMed]
  34. Molyneaux PL, Mallia P, Cox MJ, et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstuctrive pulmonary disease. Am J Respir Crit Care Med 2013 ; 188 : 1224–1231. [CrossRef] [PubMed]
  35. Braun-Fahrlander C, Riedler J, Herz U, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 2002 ; 347 : 869–877. [CrossRef] [PubMed]
  36. Fyhrquist N, Ruokolainen L, Suomalainen A, et al. Acinetobacter species in the skin microbiota protects against allergic sensitization and inflammation. J Allergy Clin Immunol 2014 ; 134 : 1301–1309. [CrossRef] [PubMed]
  37. Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014 ; 20 : 159–166. [CrossRef] [PubMed]
  38. Schram-Bijkerk D, Doekes G, Douwes J, et al. Bacterial and fungal agents in house dust and wheeze in children: the PARSIFAL study. Clin Exp Allergy 2005 ; 35 : 1272–1278. [CrossRef] [PubMed]
  39. Ege MJ, Mayer M, Normand AC, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med 2011 ; 364 : 701–709. [CrossRef] [PubMed]
  40. Freymuth F, Vabret A, Dina J, et al. Les virus des bronchiolites aiguës. Arch Pediatr 2010 ; 17 : 1192–1201. [CrossRef] [PubMed]
  41. Sigurs N, Aljassim F, Kjellman B, et al. Asthma and allergy patterns over 18 years after severe RSV bronchiolitis in the first year of life. Thorax 2010 ; 65 : 1045–1052. [CrossRef] [PubMed]
  42. Bacharier LB, Cohen R, Schweiger T, et al. Determinants of asthma after severe respiratory syncytial virus bronchiolitis. J Allergy Clin Immunol 2012 ; 130 : 91–100. [CrossRef] [PubMed]
  43. Nagayama Y, Tsubaki T, Nakayama S, et al. Bacterial colonization in respiratory secretions from acute and recurrent wheezing infants and children. Pediatr Allergy Immunol 2007 ; 18 : 110–117. [CrossRef]
  44. Zhang Q, Illing R, Hui CK, et al. Bacteria in sputum of stable severe asthma and increased airway wall thickness. Respir Res 2012 ; 13 : 35. [CrossRef] [PubMed]
  45. Bisgaard H, Hermansen MN, Buchvald F, et al. Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med 2007 ; 357 : 1487–1495. [CrossRef] [PubMed]
  46. Whiteson KL, Bailey B, Bergkessel M, et al. The upper respiratory tract as a microbial source for pulmonary infections in cystic fibrosis. Parallels from island biogeography. Am J Respir Crit Care Med 2014 ; 189 : 1309–1315. [CrossRef] [PubMed]
  47. Nguyen L, Delhaes L. Un nouveau concept : le mycobiome pulmonaire. Med Sci (Paris) 2015 ; 31 : 945–947. [CrossRef] [EDP Sciences] [PubMed]
  48. Brégeon F, Rolain JM. Le résistome pulmonaire. Med Sci (Paris) 2015 ; 31 : 947–950. [CrossRef] [EDP Sciences]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.