Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 11, Novembre 2015
Page(s) 996 - 1005
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153111014
Publié en ligne 17 novembre 2015
  1. Sun Y, Thapa N, Hedman AC, Anderson RA. Phosphatidylinositol 4,5-bisphosphate: targeted production and signaling. Bioessays 2013 ; 35 : 513–522. [CrossRef] [PubMed]
  2. Salamon RS, Backer JM. Phosphatidylinositol-3,4,5-trisphosphate: tool of choice for class I PI 3-kinases. Bioessays 2013 ; 35 : 602–611. [CrossRef] [PubMed]
  3. Schink KO, Raiborg C, Stenmark H. Phosphatidylinositol 3-phosphate, a lipid that regulates membrane dynamics, protein sorting and cell signalling. Bioessays 2013 ; 35 : 900–912. [PubMed]
  4. De Matteis MA, Wilson C, D’Angelo G. Phosphatidylinositol-4-phosphate: the Golgi and beyond. Bioessays 2013 ; 35 : 612–622. [CrossRef] [PubMed]
  5. Gassama-Diagne A, Payrastre B. Phosphoinositide signaling pathways: promising role as builders of epithelial cell polarity. Int Rev Cell Mol Biol 2009 ; 273 : 313–343. [CrossRef] [PubMed]
  6. Proikas-Cezanne T, Takacs Z, Donnes P, Kohlbacher O. WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J Cell Sci 2015 ; 128 : 207–217. [CrossRef] [PubMed]
  7. Sagona AP, Nezis IP, Pedersen NM, et al. PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat Cell Biol 2010 ; 12 : 362–371. [CrossRef] [PubMed]
  8. D’Angelo G, Vicinanza M, Di Campli A, De Matteis MA. The multiple roles of PtdIns(4)P - not just the precursor of PtdIns(4,5)P2. J Cell Sci 2008 ; 121 : 1955–1963. [CrossRef] [PubMed]
  9. Viaud J, Boal F, Tronchere H, et al. Phosphatidylinositol 5-phosphate: a nuclear stress lipid and a tuner of membranes and cytoskeleton dynamics. Bioessays 2014 ; 36 : 260–272. [CrossRef] [PubMed]
  10. Niebuhr K, Giuriato S, Pedron T, et al. Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S.flexneri effector IpgD reorganizes host cell morphology. EMBO J 2002 ; 21 : 5069–5078. [CrossRef] [PubMed]
  11. Pendaries C, Tronchere H, Arbibe L, et al. PtdIns5P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J 2006 ; 25 : 1024–1034. [CrossRef] [PubMed]
  12. Ramel D, Lagarrigue F, Pons V, et al. Shigella flexneri infection generates the lipid PI5P to alter endocytosis and prevent termination of EGFR signaling. Sci Signal 2011; 4 : ra61. [CrossRef] [PubMed]
  13. Puhar A, Tronchere H, Payrastre B, et al. A Shigella effector dampens inflammation by regulating epithelial release of danger signal ATP through production of the lipid mediator PtdIns5P. Immunity 2013 ; 39 : 1121–1131. [CrossRef] [PubMed]
  14. Guittard G, Gerard A, Dupuis-Coronas S, et al. Cutting edge: Dok-1 and Dok-2 adaptor molecules are regulated by phosphatidylinositol 5-phosphate production in T cells. J Immunol 2009 ; 182 : 3974–3978. [CrossRef]
  15. Viaud J, Lagarrigue F, Ramel D, et al. Phosphatidylinositol 5-phosphate regulates invasion through binding and activation of Tiam1. Nat Commun 2014 ; 5 : 4080. [CrossRef] [PubMed]
  16. Boal F, Mansour R, Gayral M, et al. TOM1 is a PI5P effector involved in the regulation of endosomal maturation. J Cell Sci 2015 ; 128 : 815–827. [CrossRef] [PubMed]
  17. Vicinanza M, Korolchuk VI, Ashkenazi A, et al. PI(5)P regulates autophagosome biogenesis. Mol Cell 2015 ; 57 : 219–234. [CrossRef] [PubMed]
  18. Xie J, Erneux C, Pirson I. How does SHIP1/2 balance PtdIns(3,4)P2 and does it signal independently of its phosphatase activity? Bioessays 2013 ; 35 : 733–743. [CrossRef] [PubMed]
  19. Posor Y, Eichhorn-Gruenig M, Puchkov D, et al. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 2013 ; 499 : 233–237. [CrossRef] [PubMed]
  20. Li H, Marshall AJ. Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: a distinct branch of PI3K signaling. Cell Signal 2015 ; 27 : 1789–1798. [CrossRef] [PubMed]
  21. Boucrot E, Ferreira AP, Almeida-Souza L, et al. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 2015 ; 517 : 460–465. [CrossRef] [PubMed]
  22. McCartney AJ, Zhang Y, Weisman LS. Phosphatidylinositol 3,5-bisphosphate: low abundance, high significance. Bioessays 2014 ; 36 : 52–64. [CrossRef] [PubMed]
  23. Thumm M, Busse RA, Scacioc A, et al. It takes two to tango: PROPPINs use two phosphoinositide-binding sites. Autophagy 2013 ; 9 : 106–107. [CrossRef] [PubMed]
  24. Krick R, Busse RA, Scacioc A, et al. Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a beta-propeller protein family. Proc Natl Acad Sci USA 2012 ; 109 : E2042–E2049. [CrossRef]
  25. Vasudevan KM, Garraway LA. AKT signaling in physiology and disease. Curr Top Microbiol Immunol 2010 ; 347 : 105–133. [PubMed]
  26. Viaud J, Gaits-Iacovoni F, Payrastre B. Regulation of the DH-PH tandem of guanine nucleotide exchange factor for Rho GTPases by phosphoinositides. Adv Biol Regul 2012 ; 52 : 303–314. [CrossRef] [PubMed]
  27. Gassama-Diagne A, Yu W, ter Beest M, et al. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat Cell Biol 2006 ; 8 : 963–970. [CrossRef] [PubMed]
  28. Lemmon MA, Ferguson KM, Abrams CS. Pleckstrin homology domains and the cytoskeleton. FEBS Lett 2002 ; 513 : 71–76. [CrossRef] [PubMed]
  29. Tronchère H, Laporte J, Payrastre B. Myotubularins and associated neuromuscular diseases. Clin Lipidol 2012 ; 7 : 151–162. [CrossRef]
  30. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 2014 ; 13 : 140–156. [CrossRef] [PubMed]
  31. Leevers SJ, Vanhaesebroeck B, Waterfield MD. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 1999 ; 11 : 219–225. [CrossRef] [PubMed]
  32. Whitman M, Downes CP, Keeler M, et al. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988 ; 332 : 644–646. [CrossRef] [PubMed]
  33. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002 ; 296 : 1655–1657. [CrossRef] [PubMed]
  34. Hawkins PT, Anderson KE, Davidson K, Stephens LR. Signalling through class I PI3Ks in mammalian cells. Biochem Soc Trans 2006 ; 34 : 647–662. [CrossRef] [PubMed]
  35. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 2010 ; 11 : 329–341. [CrossRef] [PubMed]
  36. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004 ; 304 : 554. [CrossRef] [PubMed]
  37. Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci USA 2008 ; 105 : 2652–2657. [CrossRef]
  38. Mirzaa G, Conway R, Graham JMJr, Dobyns WB. PIK3CA-related segmental overgrowth. In: Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews(R). Seattle (WA) : University of Washington, 1993.
  39. Cescon DW, Gorrini C, Mak TW. Breaking up is hard to do: PI3K isoforms on the rebound. Cancer Cell 2015 ; 27 : 5–7. [CrossRef] [PubMed]
  40. Jou ST, Carpino N, Takahashi Y, et al. Essential, nonredundant role for the phosphoinositide 3-kinase p110delta in signaling by the B-cell receptor complex. Mol Cell Biol 2002 ; 22 : 8580–8591. [CrossRef] [PubMed]
  41. Fruman DA, Rommel C. PI3Kdelta inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discov 2011 ; 1 : 562–572. [CrossRef] [PubMed]
  42. Gopal AK, Kahl BS, de Vos S, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 2014 ; 370 : 1008–1018. [CrossRef] [PubMed]
  43. Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 2014 ; 370 : 997–1007. [CrossRef] [PubMed]
  44. Walsh CM, Fruman DA. Too much of a good thing: immunodeficiency due to hyperactive PI3K signaling. J Clin Invest 2014 ; 124 : 3688–3690. [CrossRef] [PubMed]
  45. Gratacap MP, Guillermet-Guibert J, Martin V, et al. Regulation and roles of PI3Kbeta, a major actor in platelet signaling and functions. Adv Enzyme Regul 2011 ; 51 : 106–116. [CrossRef] [PubMed]
  46. Jackson SP, Schoenwaelder SM, Goncalves I, et al. PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat Med 2005 ; 11 : 507–514. [CrossRef] [PubMed]
  47. Canobbio I, Stefanini L, Cipolla L, et al. Genetic evidence for a predominant role of PI3Kbeta catalytic activity in ITAM- and integrin-mediated signaling in platelets. Blood 2009 ; 114 : 2193–2196. [CrossRef] [PubMed]
  48. Martin V, Guillermet-Guibert J, Chicanne G, et al. Deletion of the p110beta isoform of phosphoinositide 3-kinase in platelets reveals its central role in Akt activation and thrombus formation in vitro and in vivo. Blood 2010 ; 115 : 2008–2013. [CrossRef] [PubMed]
  49. Consonni A, Cipolla L, Guidetti G, et al. Role and regulation of phosphatidylinositol 3-kinase beta in platelet integrin alpha2beta1 signaling. Blood 2012 ; 119 : 847–856. [CrossRef] [PubMed]
  50. Jackson SP, Schoenwaelder SM. Antithrombotic phosphoinositide 3-kinase beta inhibitors in humans: a shear delight! J Thromb Haemost 2012 ; 10 : 2123–2126. [CrossRef] [PubMed]
  51. Nylander S, Kull B, Bjorkman JA, et al. Human target validation of phosphoinositide 3-kinase (PI3K)beta: effects on platelets and insulin sensitivity, using AZD6482 a novel PI3Kbeta inhibitor. J Thromb Haemost 2012 ; 10 : 2127–2136. [CrossRef] [PubMed]
  52. Laurent PA, Severin S, Hechler B, et al. Platelet PI3Kbeta and GSK3 regulate thrombus stability at a high shear rate. Blood 2015 ; 125 : 881–888. [CrossRef] [PubMed]
  53. Torti M. PI3Kbeta inhibition: all that glitters is not gold. Blood 2015 ; 125 : 750–751. [CrossRef] [PubMed]
  54. McCrea HJ, De Camilli P. Mutations in phosphoinositide metabolizing enzymes and human disease. Physiology 2009 ; 24 : 8–16. [CrossRef]
  55. Staiano L, De Leo MG, Persico M, De Matteis MA. Mendelian disorders of PI metabolizing enzymes. Biochim Biophys Acta 2015 ; 1851 : 867–881. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.