Free Access
Issue
Med Sci (Paris)
Volume 31, Number 11, Novembre 2015
Page(s) 1006 - 1013
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153111015
Published online 17 November 2015
  1. Burton DG. Cellular senescence, ageing and disease. Age 2009 ; 31 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  2. Bischof O, Dejean A, Pineau P. Une re-vue de la sénescence cellulaire : ami ou ennemi de la promotion tumorale ? Med Sci (Paris) 2009 ; 25 : 153–160. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Lacroix M, Linares LK, Le Cam L. Le Yin et le Yang de la sénescence : est-il possible de vieillir sans développer le cancer ? Med Sci (Paris) 2012 ; 28 : 245–247. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Serrano M, Blasco MA. Putting the stress on senescence. Curr Opin Cell Biol 2001 ; 13 : 748–753. [CrossRef] [PubMed] [Google Scholar]
  5. Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol 2012 ; 22 : R741–R752. [CrossRef] [PubMed] [Google Scholar]
  6. Gale CR, Cooper C, Sayer AA. Framingham cardiovascular disease risk scores and incident frailty: the English longitudinal study of ageing. Age 2014 ; 36 : 9692. [CrossRef] [PubMed] [Google Scholar]
  7. Galati A, Micheli E, Cacchione S. Chromatin structure in telomere dynamics. Front Oncol 2013 ; 3 : 46. [CrossRef] [PubMed] [Google Scholar]
  8. Fyhrquist F, Saijonmaa O, Strandberg T. The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol 2013 ; 10 : 274–283. [CrossRef] [PubMed] [Google Scholar]
  9. Chong JJ, Chandrakanthan V, Xaymardan M, et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 2011 ; 9 : 527–540. [CrossRef] [PubMed] [Google Scholar]
  10. Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science 2009 ; 324 : 98–102. [CrossRef] [PubMed] [Google Scholar]
  11. Cesselli D, Beltrami AP, D’Aurizio F, et al. Effects of age and heart failure on human cardiac stem cell function. Am J Pathol 2011 ; 179 : 349–366. [CrossRef] [PubMed] [Google Scholar]
  12. Sahin E, Colla S, Liesa M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011 ; 470 : 359–365. [CrossRef] [PubMed] [Google Scholar]
  13. Moslehi J, DePinho RA, Sahin E. Telomeres and mitochondria in the aging heart. Circ Res 2012 ; 110 : 1226–1237. [CrossRef] [Google Scholar]
  14. Rossiello F, Herbig U, Longhese MP, et al. Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr Opin Genet Dev 2014; 26C : 89–95. [CrossRef] [PubMed] [Google Scholar]
  15. Zhu F, Li Y, Zhang J, et al. Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS One 2013 ; 8 : e74535. [CrossRef] [PubMed] [Google Scholar]
  16. Villeneuve C, Guilbeau-Frugier C, Sicard P, et al. p53-PGC-1alpha pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase-A upregulation: role in chronic left ventricular dysfunction in mice. Antioxid Redox Signal 2013 ; 18 : 5–18. [CrossRef] [PubMed] [Google Scholar]
  17. Puente BN, Kimura W, Muralidhar SA, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 2014 ; 157 : 565–579. [CrossRef] [PubMed] [Google Scholar]
  18. Sikora E. Rejuvenation of senescent cells-the road to postponing human aging and age-related disease? Exp Gerontol 2013 ; 48 : 661–666. [CrossRef] [PubMed] [Google Scholar]
  19. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956 ; 11 : 298–300. [CrossRef] [PubMed] [Google Scholar]
  20. Stuart JA, Maddalena LA, Merilovich M, Robb EL. A midlife crisis for the mitochondrial free radical theory of aging. Longev Healthspan 2014 ; 3 : 4. [CrossRef] [PubMed] [Google Scholar]
  21. Brondello JM, Prieur A, Philipot D, et al. La sénescence cellulaire : un nouveau mythe de Janus ? Med Sci (Paris) 2012 ; 28 : 288–296. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  22. Webster BR, Lu Z, Sack MN, Scott I. The role of sirtuins in modulating redox stressors. Free Radic Biol Med 2012 ; 52 : 281–290. [CrossRef] [PubMed] [Google Scholar]
  23. Li YG, Zhu W, Tao JP, et al. Resveratrol protects cardiomyocytes from oxidative stress through SIRT1 and mitochondrial biogenesis signaling pathways. Biochem Biophys Res Commun 2013 ; 438 : 270–276. [CrossRef] [PubMed] [Google Scholar]
  24. Wohlgemuth SE, Calvani R, Marzetti E. The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology. J Mol Cell Cardiol 2014 ; 71 : 62–70. [CrossRef] [PubMed] [Google Scholar]
  25. Lauri A, Pompilio G, Capogrossi MC. The mitochondrial genome in aging and senescence. Ageing Res Rev 2014; 18C : 1–15. [CrossRef] [Google Scholar]
  26. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 2013 ; 20 : 31–42. [CrossRef] [PubMed] [Google Scholar]
  27. Sachs HG, Colgan JA, Lazarus ML. Ultrastructure of the aging myocardium: a morphometric approach. Am J Anat 1977 ; 150 : 63–71. [CrossRef] [PubMed] [Google Scholar]
  28. Mohamed SA, Hanke T, Erasmi AW, et al. Mitochondrial DNA deletions and the aging heart. Exp Gerontol 2006 ; 41 : 508–517. [CrossRef] [PubMed] [Google Scholar]
  29. Barja G, Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 2000 ; 14 : 312–318. [PubMed] [Google Scholar]
  30. Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004 ; 429 : 417–423. [CrossRef] [PubMed] [Google Scholar]
  31. Bronze-da-Rocha E. MicroRNAs expression profiles in cardiovascular diseases. BioMed Res Int 2014 ; 2014 : 985408. [PubMed] [Google Scholar]
  32. Hinkel R, Ng JK, Kupatt C. Targeting microRNAs for cardiovascular therapeutics in coronary artery disease. Curr Opin Cardiol 2014 ; 29 : 586–594. [CrossRef] [PubMed] [Google Scholar]
  33. Thum T. Noncoding RNAs and myocardial fibrosis. Nat Rev Cardiol 2014 ; 11 : 655–663. [CrossRef] [PubMed] [Google Scholar]
  34. Thum T, Catalucci D, Bauersachs J. MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc Res 2008 ; 79 : 562–570. [CrossRef] [PubMed] [Google Scholar]
  35. Bril A. MicroRNA therapeutics in cardiovascular disease. In : Gowraganahalli J, Pitchai B, Khin MU, eds. Pathophysiology and pharmacotherapy of cardiovascular disease. Switzerland : Springer International Publishing, 2015. [Google Scholar]
  36. Boon RA, Iekushi K, Lechner S, et al. MicroRNA-34a regulates cardiac ageing and function. Nature 2013 ; 495 : 107–110. [CrossRef] [PubMed] [Google Scholar]
  37. Zhang X, Azhar G, Wei JY. The expression of microRNA and microRNA clusters in the aging heart. PLoS One 2012 ; 7 : e34688. [CrossRef] [PubMed] [Google Scholar]
  38. Jazbutyte V, Fiedler J, Kneitz S, et al. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age 2013 ; 35 : 747–762. [CrossRef] [PubMed] [Google Scholar]
  39. Van Almen GC, Verhesen W, van Leeuwen RE, et al. MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell 2011 ; 10 : 769–779. [CrossRef] [PubMed] [Google Scholar]
  40. Jung HJ, Suh Y. Circulating miRNAs in ageing and ageing-related diseases. J Genet Genomics 2014 ; 41 : 465–472. [CrossRef] [PubMed] [Google Scholar]
  41. Fukushima Y, Nakanishi M, Nonogi H, et al. Assessment of plasma miRNAs in congestive heart failure. Circ J 2011 ; 75 : 336–340. [CrossRef] [PubMed] [Google Scholar]
  42. Dimmeler S, Nicotera P. MicroRNAs in age-related diseases. EMBO Mol Med 2013 ; 5 : 180–190. [CrossRef] [PubMed] [Google Scholar]
  43. Tchkonia T, Zhu Y, van Deursen J, et al. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013 ; 123 : 966–972. [CrossRef] [PubMed] [Google Scholar]
  44. Rodier F, Coppe JP, Patil CK, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 2009 ; 11 : 973–979. [CrossRef] [PubMed] [Google Scholar]
  45. Campisi J, Andersen JK, Kapahi P, Melov S. Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol 2011 ; 21 : 354–359. [PubMed] [Google Scholar]
  46. Salama R, Sadaie M, Hoare M, Narita M. Cellular senescence and its effector programs. Genes Dev 2014 ; 28 : 99–114. [CrossRef] [PubMed] [Google Scholar]
  47. Linton PJ, Thoman ML. Immunosenescence in monocytes, macrophages, and dendritic cells: lessons learned from the lung and heart. Immunol Lett 2014 ; 162 : 290–297. [CrossRef] [PubMed] [Google Scholar]
  48. Bailey B, Fransioli J, Gude NA, et al. Sca-1 knockout impairs myocardial and cardiac progenitor cell function. Circ Res 2012 ; 111 : 750–760. [CrossRef] [Google Scholar]
  49. Mias C, Coatrieux C, Denis C, et al. Cardiac fibroblasts regulate sympathetic nerve sprouting and neurocardiac synapse stability. PLoS One 2013 ; 8 : e79068. [CrossRef] [PubMed] [Google Scholar]
  50. Mias C, Lairez O, Trouche E, et al. Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells 2009 ; 27 : 2734–2743. [CrossRef] [PubMed] [Google Scholar]
  51. Zouggari Y, Ait-Oufella H, Bonnin P, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med 2013 ; 19 : 1273–1280. [CrossRef] [PubMed] [Google Scholar]
  52. Laroumanie F, Douin-Echinard V, Pozzo J, et al. CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload. Circulation 2014 ; 129 : 2111–2124. [CrossRef] [PubMed] [Google Scholar]
  53. Pinet F, Bauters C. Potentiel des ARN non codants comme biomarqueurs dans l’insuffisance cardiaque. Med Sci (Paris) 2015 ; 31 : 770–776. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Albagli O. Protéger et sévir : p53, métabolisme et suppression tumorale. Med Sci (Paris) 2015 ; 31 : 869–880. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.