Highlight
Free Access
Issue
Med Sci (Paris)
Volume 31, Number 11, Novembre 2015
Page(s) 1014 - 1022
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153111016
Published online 17 November 2015
  1. Jinek M, Jiang F, Taylor DW, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 2014 ; 343 : 1247997. [CrossRef] [PubMed] [Google Scholar]
  2. Fineran PC, Charpentier E. Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology 2012 ; 434 : 202–209. [CrossRef] [PubMed] [Google Scholar]
  3. Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012 ; 337 : 816–821. [CrossRef] [PubMed] [Google Scholar]
  4. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013 ; 339 : 823–826. [CrossRef] [PubMed] [Google Scholar]
  5. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013 ; 339 : 819–823. [CrossRef] [PubMed] [Google Scholar]
  6. Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 2013 ; 31 : 230–232. [CrossRef] [PubMed] [Google Scholar]
  7. Gratz SJ, Cummings AM, Nguyen JN, et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 2013 ; 194 : 1029–1035. [CrossRef] [PubMed] [Google Scholar]
  8. Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013 ; 31 : 822–826. [CrossRef] [PubMed] [Google Scholar]
  9. Cradick TJ, Fine EJ, Antico CJ, Bao G. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 2013 ; 41 : 9584–9592. [CrossRef] [PubMed] [Google Scholar]
  10. Zheng Q, Cai X, Tan MH, et al. Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells. Biotechniques 2014 ; 57 : 115–124. [PubMed] [Google Scholar]
  11. He Z, Proudfoot C, Mileham AJ, et al. Highly efficient targeted chromosome deletions using CRISPR/Cas9. Biotechnol Bioeng 2015 ; 112 : 1060–1064. [CrossRef] [PubMed] [Google Scholar]
  12. Li D, Qiu Z, Shao Y, et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 2013 ; 31 : 681–683. [CrossRef] [PubMed] [Google Scholar]
  13. Sung YH, Kim JM, Kim HT, et al. Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res 2014 ; 24 : 125–131. [CrossRef] [PubMed] [Google Scholar]
  14. Tan EP, Li Y, Velasco-Herrera Mdel C, et al. Off-target assessment of CRISPR-Cas9 guiding RNAs in human iPS and mouse ES cells. Genesis 2015 ; 53 : 225–236. [CrossRef] [PubMed] [Google Scholar]
  15. Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol 2013 ; 31 : 684–686. [CrossRef] [PubMed] [Google Scholar]
  16. Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013 ; 154 : 1380–1389. [CrossRef] [PubMed] [Google Scholar]
  17. Fu Y, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014 ; 32 : 279–284. [CrossRef] [PubMed] [Google Scholar]
  18. Tsai SQ, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 2014 ; 32 : 569–576. [CrossRef] [PubMed] [Google Scholar]
  19. Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013 ; 152 : 1173–1183. [CrossRef] [PubMed] [Google Scholar]
  20. Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013 ; 154 : 442–451. [CrossRef] [PubMed] [Google Scholar]
  21. Maeder ML, Linder SJ, Cascio VM, et al. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 2013 ; 10 : 977–979. [CrossRef] [PubMed] [Google Scholar]
  22. Perez-Pinera P, Kocak DD, Vockley CM, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 2013 ; 10 : 973–976. [CrossRef] [PubMed] [Google Scholar]
  23. Cheng AW, Wang H, Yang H, et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 2013 ; 23 : 1163–1171. [CrossRef] [PubMed] [Google Scholar]
  24. Hilton IB, D’Ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 2015 ; 33 : 510–517. [CrossRef] [PubMed] [Google Scholar]
  25. Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013 ; 31 : 227–229. [CrossRef] [PubMed] [Google Scholar]
  26. Irion U, Krauss J, Nusslein-Volhard C. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 2014 ; 141 : 4827–4830. [CrossRef] [PubMed] [Google Scholar]
  27. Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science 2014 ; 343 : 80–84. [CrossRef] [PubMed] [Google Scholar]
  28. Wu Y, Liang D, Wang Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 2013 ; 13 : 659–662. [CrossRef] [PubMed] [Google Scholar]
  29. Heckl D, Kowalczyk MS, Yudovich D, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 2014 ; 32 : 941–946. [CrossRef] [PubMed] [Google Scholar]
  30. Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2014 ; 514 : 380–384. [CrossRef] [PubMed] [Google Scholar]
  31. Nakamura K, Fujii W, Tsuboi M, et al. Generation of muscular dystrophy model rats with a CRISPR/Cas system. Sci Rep 2014 ; 4 : 5635. [PubMed] [Google Scholar]
  32. Long C, McAnally JR, Shelton JM, et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 2014 ; 345 : 1184–1188. [CrossRef] [PubMed] [Google Scholar]
  33. Zhang C, Xiao B, Jiang Y, et al. Efficient editing of malaria parasite genome using the CRISPR/Cas9 system. MBio 2014 ; 5 : e01414–e01414. [PubMed] [Google Scholar]
  34. Whitworth KM, Lee K, Benne JA, et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 2014 ; 91 : 78. [CrossRef] [PubMed] [Google Scholar]
  35. Niu Y, Shen B, Cui Y, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 2014 ; 156 : 836–843. [CrossRef] [PubMed] [Google Scholar]
  36. Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014 ; 343 : 84–87. [CrossRef] [PubMed] [Google Scholar]
  37. Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013 ; 13 : 653–658. [CrossRef] [PubMed] [Google Scholar]
  38. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 2013 ; 3 : 2510. [CrossRef] [PubMed] [Google Scholar]
  39. Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA 2014 ; 111 : 11461–11466. [CrossRef] [Google Scholar]
  40. Hou Z, Zhang Y, Propson NE, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA 2013 ; 110 : 15644–15649. [CrossRef] [Google Scholar]
  41. Fonfara I, Le Rhun A, Chylinski K, et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 2014 ; 42 : 2577–2590. [CrossRef] [PubMed] [Google Scholar]
  42. Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015 ; 520 : 186–191. [CrossRef] [PubMed] [Google Scholar]
  43. Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015 ; 6 : 363–372. [CrossRef] [PubMed] [Google Scholar]
  44. Baltimore D, Berg P, Botchan M, et al. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science 2015 ; 348 : 36–38. [CrossRef] [PubMed] [Google Scholar]
  45. Dion S, Demattei MV, Renault S. Les domaines à doigts de zinc. Med Sci (Paris) 2007 ; 23 : 834–839. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Dupret B, Angrand PO. L’ingénierie des génomes par les TALEN. Med Sci (Paris) 2014 ; 30 : 186–193. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Gilgenkrantz H. La révolution des CRISPR est en marche. Med Sci (Paris) 2014 ; 30 : 1066–1069. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Jordan B. Thérapie génique germinale, le retour ? Med Sci (Paris) 2015 ; 31 : 691–695. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Gaudin R. Améliorons notre expérience de la molécule unique grâce à CRISPR. Med Sci (Paris) 2015 ; 31 : 959–961. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Jordan B. CRISPR-Cas9, une nouvelle donne pour la thérapie génique. Med Sci (Paris) 2015 ; 31 : 1035–1038. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.