Free Access
Issue
Med Sci (Paris)
Volume 31, Number 11, Novembre 2015
Page(s) 1023 - 1033
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153111017
Published online 17 November 2015
  1. Huang Y, de Leval L, Gaulard P. Molecular underpinning of extranodal NK/T-cell lymphoma. Best Pract Res Clin Haematol 2013 ; 26 : 57–74. [CrossRef] [PubMed] [Google Scholar]
  2. Murata K, Yamada Y. The state of the art in the pathogenesis of ATL and new potential targets associated with HTLV-1 and ATL. Int Rev Immunol 2007 ; 26 : 249–268. [CrossRef] [PubMed] [Google Scholar]
  3. Yamagishi M, Watanabe T. Molecular hallmarks of adult T cell leukemia. Front Microbiol 2012 ; 3 : 334. [CrossRef] [PubMed] [Google Scholar]
  4. William BM, Armitage JO. International analysis of the frequency and outcomes of NK/T-cell lymphomas. Best Pract Res Clin Haematol 2013 ; 26 : 23–32. [CrossRef] [PubMed] [Google Scholar]
  5. Lin CW, Lee WH, Chang CL, et al. Restricted killer cell immunoglobulin-like receptor repertoire without T-cell receptor gamma rearrangement supports a true natural killer-cell lineage in a subset of sinonasal lymphomas. Am J Pathol 2001 ; 159 : 1671–1679. [CrossRef] [PubMed] [Google Scholar]
  6. Iqbal J, Weisenburger DD, Chowdhury A, et al. Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic γδ T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro. Leukemia 2011 ; 25 : 348–358. [CrossRef] [PubMed] [Google Scholar]
  7. Chiang AK, Chan AC, Srivastava G, et al. Nasal T/natural killer (NK)-cell lymphomas are derived from Epstein-Barr virus-infected cytotoxic lymphocytes of both NK- and T-cell lineage. Int J Cancer 1997 ; 73 : 332–338. [CrossRef] [PubMed] [Google Scholar]
  8. Iqbal J, Liu Z, Deffenbacher K, et al. Gene expression profiling in lymphoma diagnosis and management. Best Pract Res Clin Haematol 2009 ; 22 : 191–210. [CrossRef] [PubMed] [Google Scholar]
  9. Iqbal J, Kucuk C, Deleeuw RJ, et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia 2009 ; 23 : 1139–1151. [CrossRef] [PubMed] [Google Scholar]
  10. Huang Y, de Reyniès A, de Leval L, et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood 2010 ; 115 : 1226–1237. [CrossRef] [PubMed] [Google Scholar]
  11. Ng SB, Selvarajan V, Huang G, et al. Activated oncogenic pathways and therapeutic targets in extranodal nasal-type NK/T cell lymphoma revealed by gene expression profiling. J Pathol 2011 ; 223 : 496–510. [CrossRef] [PubMed] [Google Scholar]
  12. Coppo P, Gouilleux-Gruart V, Huang Y, et al. STAT3 transcription factor is constitutively activated and is oncogenic in nasal-type NK/T-cell lymphoma. Leukemia 2009 ; 23 : 1667–1678. [CrossRef] [PubMed] [Google Scholar]
  13. Shtilbans V, Wu M, Burstein DE. Current overview of the role of Akt in cancer studies via applied immunohistochemistry. Ann Diagn Pathol 2008 ; 12 : 153–160. [CrossRef] [PubMed] [Google Scholar]
  14. Jørgensen JM, Sørensen FB, Bendix K, et al. Expression level, tissue distribution pattern, and prognostic impact of vascular endothelial growth factors VEGF and VEGF-C and their receptors Flt-1, KDR, and Flt-4 in different subtypes of non-Hodgkin lymphomas. Leuk Lymphoma 2009 ; 50 : 1647–1660. [CrossRef] [PubMed] [Google Scholar]
  15. Bischoff JR, Plowman GD. The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol 1999 ; 9 : 454–459. [CrossRef] [PubMed] [Google Scholar]
  16. Katayama H, Sasai K, Kawai H, et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 2004 ; 36 : 55–62. [CrossRef] [PubMed] [Google Scholar]
  17. Nakashima Y, Tagawa H, Suzuki R, et al. Genome-wide array-based comparative genomic hybridization of natural killer cell lymphoma/leukemia: different genomic alteration patterns of aggressive NK-cell leukemia and extranodal Nk/T-cell lymphoma, nasal type. Genes Chromosomes Cancer 2005 ; 44 : 247–255. [CrossRef] [PubMed] [Google Scholar]
  18. Siu LL, Chan V, Chan JK, et al. Consistent patterns of allelic loss in natural killer cell lymphoma. Am J Pathol 2000 ; 157 : 1803–1809. [CrossRef] [PubMed] [Google Scholar]
  19. Siu LL, Wong KF, Chan JK, et al. Comparative genomic hybridization analysis of natural killer cell lymphoma/leukemia. Recognition of consistent patterns of genetic alterations. Am J Pathol 1999 ; 155 : 1419–1425. [CrossRef] [PubMed] [Google Scholar]
  20. Taborelli M, Tibiletti MG, Martin V, et al. Chromosome band 6q deletion pattern in malignant lymphomas. Cancer Genet Cytogenet 2006 ; 165 : 106–113. [CrossRef] [PubMed] [Google Scholar]
  21. Ko YH, Choi KE, Han JH, et al. Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma. Cytometry 2001 ; 46 : 85–91. [CrossRef] [Google Scholar]
  22. Sun HS, Su I-J, Lin Y-C, et al. A 2.6 Mb interval on chromosome 6q25.2-q25.3 is commonly deleted in human nasal natural killer/T-cell lymphoma. Br J Haematol 2003 ; 122 : 590–599. [CrossRef] [PubMed] [Google Scholar]
  23. Küçük C, Iqbal J, Hu X, et al. PRDM1 is a tumor suppressor gene in natural killer cell malignancies. Proc Natl Acad Sci USA 2011 ; 108 : 20119–20124. [CrossRef] [Google Scholar]
  24. Karube K, Nakagawa M, Tsuzuki S, et al. Identification of FOXO3 and PRDM1 as tumor-suppressor gene candidates in NK-cell neoplasms by genomic and functional analyses. Blood 2011 ; 118 : 3195–3204. [CrossRef] [PubMed] [Google Scholar]
  25. Küçük C, Hu X, Iqbal J, et al. HACE1 is a tumor suppressor gene candidate in natural killer cell neoplasms. Am J Pathol 2013 ; 182 : 49–55. [CrossRef] [PubMed] [Google Scholar]
  26. Anglesio MS, Evdokimova V, Melnyk N, et al. Differential expression of a novel ankyrin containing E3 ubiquitin-protein ligase, Hace1, in sporadic Wilms’ tumor versus normal kidney. Hum Mol Genet. 2004 ; 13 : 2061–2074. [CrossRef] [PubMed] [Google Scholar]
  27. Zhang L, Anglesio MS, O’Sullivan M, et al. The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers. Nat Med 2007 ; 13 : 1060–1069. [CrossRef] [PubMed] [Google Scholar]
  28. Thelander EF, Ichimura K, Corcoran M, et al. Characterization of 6q deletions in mature B cell lymphomas and childhood acute lymphoblastic leukemia. Leuk Lymphoma 2008 ; 49 : 477–487. [CrossRef] [PubMed] [Google Scholar]
  29. Sakata M, Kitamura YH, Sakuraba K, et al. Methylation of HACE1 in gastric carcinoma. Anticancer Res 2009 ; 29 : 2231–2233. [PubMed] [Google Scholar]
  30. Hibi K, Sakata M, Sakuraba K, et al. Aberrant methylation of the HACE1 gene is frequently detected in advanced colorectal cancer. Anticancer Res 2008 ; 28 : 1581–1584. [PubMed] [Google Scholar]
  31. Koo GC, Tan SY, Tang T, et al. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov 2012 ; 2 : 591–597. [CrossRef] [PubMed] [Google Scholar]
  32. Bouchekioua A, Scourzic L, de Wever O, et al. JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma. Leukemia 2014 ; 28 : 338–348. [CrossRef] [PubMed] [Google Scholar]
  33. Jerez A, Clemente MJ, Makishima H, et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood 2012 ; 120 : 3048–3057. [CrossRef] [PubMed] [Google Scholar]
  34. Koskela HLM, Eldfors S, Ellonen P, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med 2012 ; 366 : 1905–1913. [CrossRef] [PubMed] [Google Scholar]
  35. Küçük C, Jiang B, Hu X, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat Commun 2015 ; 6 : 6025. [CrossRef] [PubMed] [Google Scholar]
  36. Jiang L, Gu ZH, Yan ZX, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet 2015 ; 47 : 1061–1066. [CrossRef] [PubMed] [Google Scholar]
  37. Shen L, Liang ACT, Lu L, et al. Frequent deletion of Fas gene sequences encoding death and transmembrane domains in nasal natural killer/T-cell lymphoma. Am J Pathol 2002 ; 161 : 2123–2131. [CrossRef] [PubMed] [Google Scholar]
  38. Takakuwa T, Dong Z, Nakatsuka S, et al. Frequent mutations of Fas gene in nasal NK/T cell lymphoma. Oncogene 2002 ; 21 : 4702–4705. [CrossRef] [PubMed] [Google Scholar]
  39. Takahara M, Kishibe K, Bandoh N, et al. P53, N- and K-Ras, and beta-catenin gene mutations and prognostic factors in nasal NK/T-cell lymphoma from Hokkaido. Japan. Hum Pathol 2004 ; 35 : 86–95. [CrossRef] [Google Scholar]
  40. Hoshida Y, Hongyo T, Jia X, et al. Analysis of p53, K-ras, c-kit, and beta-catenin gene mutations in sinonasal NK/T cell lymphoma in northeast district of China. Cancer Sci 2003 ; 94 : 297–301. [CrossRef] [PubMed] [Google Scholar]
  41. Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma study group (1984–87). Br J Haematol 1991 ; 79 : 428–437. [CrossRef] [PubMed] [Google Scholar]
  42. Tsukasaki K, Tobinai K. Biology and treatment of HTLV-1 associated T-cell lymphomas. Best Pract Res Clin Haematol 2013 ; 26 : 3–14. [CrossRef] [PubMed] [Google Scholar]
  43. Yasunaga J, Matsuoka M. Molecular mechanisms of HTLV-1 infection and pathogenesis. Int J Hematol 2011 ; 94 : 435–442. [CrossRef] [PubMed] [Google Scholar]
  44. Hasegawa H, Sawa H, Lewis MJ, et al. Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nat Med 2006 ; 12 : 466–472. [CrossRef] [PubMed] [Google Scholar]
  45. Ohsugi T, Kumasaka T, Okada S, et al. The Tax protein of HTLV-1 promotes oncogenesis in not only immature T cells but also mature T cells. Nat Med 2007 ; 13 : 527–528. [CrossRef] [PubMed] [Google Scholar]
  46. Suzuki T, Kitao S, Matsushime H, et al. HTLV-1 Tax protein interacts with cyclin-dependent kinase inhibitor p16INK4A and counteracts its inhibitory activity towards CDK4. EMBO J 1996 ; 15 : 1607–1614. [PubMed] [Google Scholar]
  47. Akagi T, Ono H, Shimotohno K. Expression of cell-cycle regulatory genes in HTLV-I infected T-cell lines: possible involvement of Tax1 in the altered expression of cyclin D2, p18Ink4 and p21Waf1/Cip1/Sdi1. Oncogene 1996 ; 12 : 1645–1652. [PubMed] [Google Scholar]
  48. Neuveut C, Low KG, Maldarelli F, et al. Human T-cell leukemia virus type 1 Tax and cell cycle progression: role of cyclin D-cdk and p110Rb. Mol Cell Biol 1998 ; 18 : 3620–3632. [CrossRef] [PubMed] [Google Scholar]
  49. Schmitt I, Rosin O, Rohwer P, et al. Stimulation of cyclin-dependent kinase activity and G1- to S-phase transition in human lymphocytes by the human T-cell leukemia/lymphotropic virus type 1 Tax protein. J Virol 1998 ; 72 : 633–640. [PubMed] [Google Scholar]
  50. Suzuki T, Narita T, Uchida-Toita M, et al. Down-regulation of the INK4 family of cyclin-dependent kinase inhibitors by tax protein of HTLV-1 through two distinct mechanisms. Virology 1999 ; 259 : 384–391. [CrossRef] [PubMed] [Google Scholar]
  51. Haller K, Wu Y, Derow E, et al. Physical interaction of human T-cell leukemia virus type 1 Tax with cyclin-dependent kinase 4 stimulates the phosphorylation of retinoblastoma protein. Mol Cell Biol 2002 ; 22 : 3327–3338. [CrossRef] [PubMed] [Google Scholar]
  52. Cheng H, Ren T, Sun S. New insight into the oncogenic mechanism of the retroviral oncoprotein Tax. Protein Cell 2012 ; 3 : 581–589. [CrossRef] [PubMed] [Google Scholar]
  53. Grassmann R, Aboud M, Jeang K-T. Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene 2005 ; 24 : 5976–5985. [CrossRef] [PubMed] [Google Scholar]
  54. Arnulf B, Villemain A, Nicot C, et al. Human T-cell lymphotropic virus oncoprotein Tax represses TGF-beta 1 signaling in human T cells via c-Jun activation: a potential mechanism of HTLV-I leukemogenesis. Blood 2002 ; 100 : 4129–4138. [CrossRef] [PubMed] [Google Scholar]
  55. El-Sabban ME, Merhi RA, Haidar HA, et al. Human T-cell lymphotropic virus type 1-transformed cells induce angiogenesis and establish functional gap junctions with endothelial cells. Blood 2002 ; 99 : 3383–3389. [CrossRef] [PubMed] [Google Scholar]
  56. Takeda S, Maeda M, Morikawa S, et al. Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int J Cancer 2004 ; 109 : 559–567. [CrossRef] [PubMed] [Google Scholar]
  57. Koiwa T, Hamano-Usami A, Ishida T, et al. 5’-long terminal repeat-selective CpG methylation of latent human T-cell leukemia virus type 1 provirus in vitro and in vivo. J Virol 2002 ; 76 : 9389–9397. [CrossRef] [PubMed] [Google Scholar]
  58. Furukawa Y, Kubota R, Tara M, et al. Existence of escape mutant in HTLV-I tax during the development of adult T-cell leukemia. Blood 2001 ; 97 : 987–993. [CrossRef] [PubMed] [Google Scholar]
  59. Arnulf B, Thorel M, Poirot Y, et al. Loss of the ex vivo but not the reinducible CD8+ T-cell response to Tax in human T-cell leukemia virus type 1-infected patients with adult T-cell leukemia/lymphoma. Leukemia 2004 ; 18 : 126–132. [CrossRef] [PubMed] [Google Scholar]
  60. Miyazaki M, Yasunaga J-I, Taniguchi Y, et al. Preferential selection of human T-cell leukemia virus type 1 provirus lacking the 5’ long terminal repeat during oncogenesis. J Virol 2007 ; 81 : 5714–5723. [CrossRef] [PubMed] [Google Scholar]
  61. Satou Y, Yasunaga J, Yoshida M, et al. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci USA 2006 ; 103 : 720–725. [CrossRef] [Google Scholar]
  62. Arnold J, Yamamoto B, Li M, et al. Enhancement of infectivity and persistence in vivo by HBZ, a natural antisense coded protein of HTLV-1. Blood 2006 ; 107 : 3976–3982. [CrossRef] [PubMed] [Google Scholar]
  63. Arnold J, Zimmerman B, Li M, et al. Human T-cell leukemia virus type-1 antisense-encoded gene, Hbz, promotes T-lymphocyte proliferation. Blood 2008 ; 112 : 3788–3797. [CrossRef] [PubMed] [Google Scholar]
  64. Matsuoka M, Yasunaga J. Human T-cell leukemia virus type 1: replication, proliferation and propagation by Tax and HTLV-1 bZIP factor. Curr Opin Virol 2013 ; 3 : 684–691. [CrossRef] [PubMed] [Google Scholar]
  65. Zhao T, Yasunaga J, Satou Y, et al. Human T-cell leukemia virus type 1 bZIP factor selectively suppresses the classical pathway of NF-kappaB. Blood 2009 ; 113 : 2755–2764. [CrossRef] [PubMed] [Google Scholar]
  66. Satou Y, Yasunaga J-I, Zhao T, et al. HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo. PLoS Pathog 2011 ; 7 : e1001274. [CrossRef] [PubMed] [Google Scholar]
  67. Tsukasaki K, Krebs J, Nagai K, et al. Comparative genomic hybridization analysis in adult T-cell leukemia/lymphoma: correlation with clinical course. Blood 2001 ; 97 : 3875–3881. [CrossRef] [PubMed] [Google Scholar]
  68. Oshiro A, Tagawa H, Ohshima K, et al. Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma. Blood 2006 ; 107 : 4500–4507. [CrossRef] [PubMed] [Google Scholar]
  69. Uchida T, Kinoshita T, Watanabe T, et al. The CDKN2 gene alterations in various types of adult T-cell leukaemia. Br J Haematol 1996 ; 94 : 665–670. [CrossRef] [PubMed] [Google Scholar]
  70. Yamada Y, Hatta Y, Murata K, et al. Deletions of p15 and/or p16 genes as a poor-prognosis factor in adult T-cell leukemia. J Clin Oncol 1997 ; 15 : 1778–1785. [PubMed] [Google Scholar]
  71. Nosaka K, Maeda M, Tamiya S, et al. Increasing methylation of the CDKN2A gene is associated with the progression of adult T-cell leukemia. Cancer Res 2000 ; 60 : 1043–1048. [Google Scholar]
  72. Tawara M, Hogerzeil SJ, Yamada Y, et al. Impact of p53 aberration on the progression of adult T-cell leukemia/lymphoma. Cancer Lett 2006 ; 234 : 249–255. [CrossRef] [PubMed] [Google Scholar]
  73. Bernard OA, Busson-LeConiat M, Ballerini P, et al. A new recurrent and specific cryptic translocation, t(5; 14)(q35; q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001 ; 15 : 1495–1504. [CrossRef] [PubMed] [Google Scholar]
  74. Su X-Y, Della-Valle V, Andre-Schmutz I, et al. HOX11L2/TLX3 is transcriptionally activated through T-cell regulatory elements downstream of BCL11B as a result of the t(5; 14)(q35;q32). Blood 2006 ; 108 : 4198–4201. [CrossRef] [PubMed] [Google Scholar]
  75. Li L, Zhang JA, Dose M, et al. A far downstream enhancer for murine Bcl11b controls its T-cell specific expression. Blood 2013 ; 122 : 902–911. [CrossRef] [PubMed] [Google Scholar]
  76. Gutierrez A, Kentsis A, Sanda T, et al. The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. Blood 2011 ; 118 : 4169–4173. [CrossRef] [PubMed] [Google Scholar]
  77. Kurosawa N, Fujimoto R, Ozawa T, et al. Reduced level of the BCL11B protein is associated with adult T-cell leukemia/lymphoma. PloS One 2013 ; 8 : e55147. [CrossRef] [PubMed] [Google Scholar]
  78. Fujimoto R, Ozawa T, Itoyama T, et al. HELIOS-BCL11B fusion gene involvement in a t(2;14) (q34;q32) in an adult T-cell leukemia patient. Cancer Genet 2012 ; 205 : 356–364. [CrossRef] [PubMed] [Google Scholar]
  79. Pancewicz J, Taylor JM, Datta A, et al. Notch signaling contributes to proliferation and tumor formation of human T-cell leukemia virus type 1-associated adult T-cell leukemia. Proc Natl Acad Sci USA 2010 ; 107 : 16619–16624. [CrossRef] [Google Scholar]
  80. Nakagawa M, Schmitz R, Xiao W, et al. Gain-of-function CCR4 mutations in adult T cell leukemia/lymphoma. J Exp Med 2014 ; 211 : 2497–2505. [CrossRef] [PubMed] [Google Scholar]
  81. Yamamoto K, Utsunomiya A, Tobinai K, et al. Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol 2010 ; 28 : 1591–1598. [CrossRef] [PubMed] [Google Scholar]
  82. Ishida T, Joh T, Uike N, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol 2012 ; 30 : 837–842. [CrossRef] [PubMed] [Google Scholar]
  83. Taniguchi A, Nemoto Y, Yokoyama A, et al. Promoter methylation of the bone morphogenetic protein-6 gene in association with adult T-cell leukemia. Int J Cancer 2008 ; 123 : 1824–1831. [CrossRef] [PubMed] [Google Scholar]
  84. Yang Y, Takeuchi S, Tsukasaki K, et al. Methylation analysis of the adenomatous polyposis coli (APC) gene in adult T-cell leukemia/lymphoma. Leuk Res 2005 ; 29 : 47–51. [CrossRef] [PubMed] [Google Scholar]
  85. Sasaki D, Imaizumi Y, Hasegawa H, et al. Overexpression of Enhancer of zeste homolog 2 with trimethylation of lysine 27 on histone H3 in adult T-cell leukemia/lymphoma as a target for epigenetic therapy. Haematologica 2011 ; 96 : 712–719. [CrossRef] [PubMed] [Google Scholar]
  86. Yamagishi M, Nakano K, Miyake A, et al. Polycomb-mediated loss of miR-31 activates NIK-dependent NF-κB pathway in adult T cell leukemia and other cancers. Cancer Cell 2012 ; 21 : 121–135. [CrossRef] [PubMed] [Google Scholar]
  87. Kataoka K, Nagata Y, Kitanaka A, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet 2015 ; Oct 5. doi: 10.1038/ng.3415. [Google Scholar]
  88. Yamazaki J, Mizukami T, Takizawa K, et al. Identification of cancer stem cells in a Tax-transgenic (Tax-Tg) mouse model of adult T-cell leukemia/lymphoma. Blood 2009 ; 114 : 2709–2720. [CrossRef] [PubMed] [Google Scholar]
  89. Nagai Y, Kawahara M, Hishizawa M, et al. T memory stem cells are the hierarchical apex of adult T-cell leukemia. Blood 2015 ; 125 : 3527–3535. [CrossRef] [PubMed] [Google Scholar]
  90. Chandesris M-O, Malamut G, Verkarre V, et al. Enteropathy-associated T-cell lymphoma: a review on clinical presentation, diagnosis, therapeutic strategies and perspectives. Gastroentérologie Clin Biol 2010 ; 34 : 590–605. [CrossRef] [Google Scholar]
  91. Spencer J, Cerf-Bensussan N, Jarry A, et al. Enteropathy-associated T cell lymphoma (malignant histiocytosis of the intestine) is recognized by a monoclonal antibody (HML-1) that defines a membrane molecule on human mucosal lymphocytes. Am J Pathol 1988 ; 132 : 1–5. [CrossRef] [PubMed] [Google Scholar]
  92. Hüe S, Mention J-J, Monteiro RC, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 2004 ; 21 : 367–377. [CrossRef] [PubMed] [Google Scholar]
  93. Roshan B, Leffler DA, Jamma S, et al. The incidence and clinical spectrum of refractory celiac disease in a north american referral center. Am J Gastroenterol 2011 ; 106 : 923–928. [CrossRef] [Google Scholar]
  94. Cellier C, Delabesse E, Helmer C, et al. Refractory sprue, coeliac disease, and enteropathy-associated T-cell lymphoma. French Coeliac Disease Study Group. Lancet 2000 ; 356 : 203–208. [Google Scholar]
  95. Malamut G, Afchain P, Verkarre V, et al. Presentation and long-term follow-up of refractory celiac disease: comparison of type I with type II. Gastroenterology 2009 ; 136 : 81–90. [CrossRef] [PubMed] [Google Scholar]
  96. Al-Toma A, Verbeek WHM, Hadithi M, et al. Survival in refractory coeliac disease and enteropathy-associated T-cell lymphoma: retrospective evaluation of single-centre experience. Gut 2007 ; 56 : 1373–1378. [CrossRef] [PubMed] [Google Scholar]
  97. De Mascarel A, Belleannée G, Stanislas S, et al. Mucosal intraepithelial T-lymphocytes in refractory celiac disease: a neoplastic population with a variable CD8 phenotype. Am J Surg Pathol 2008 ; 32 : 744–751. [CrossRef] [PubMed] [Google Scholar]
  98. Malamut G, Meresse B, Cellier C, et al. Refractory celiac disease: from bench to bedside. Semin Immunopathol 2012 ; 34 : 601–613. [CrossRef] [PubMed] [Google Scholar]
  99. Verkarre V, Romana SP, Cellier C, et al. Recurrent partial trisomy 1q22-q44 in clonal intraepithelial lymphocytes in refractory celiac sprue. Gastroenterology 2003 ; 125 : 40–46. [CrossRef] [PubMed] [Google Scholar]
  100. Deleeuw RJ, Zettl A, Klinker E, et al. Whole-genome analysis and HLA genotyping of enteropathy-type T-cell lymphoma reveals 2 distinct lymphoma subtypes. Gastroenterology 2007 ; 132 : 1902–1911. [CrossRef] [PubMed] [Google Scholar]
  101. Zettl A, deLeeuw R, Haralambieva E, et al. Enteropathy-type T-cell lymphoma. Am J Clin Pathol 2007 ; 127 : 701–706. [CrossRef] [PubMed] [Google Scholar]
  102. Obermann EC, Diss TC, Hamoudi RA, et al. Loss of heterozygosity at chromosome 9p21 is a frequent finding in enteropathy-type T-cell lymphoma. J Pathol 2004 ; 202 : 252–262. [CrossRef] [PubMed] [Google Scholar]
  103. Cejkova P, Zettl A, Baumgärtner AK, et al. Amplification of NOTCH1 and ABL1 gene loci is a frequent aberration in enteropathy-type T-cell lymphoma. Virchows Arch Int J Pathol 2005 ; 446 : 416–420. [CrossRef] [Google Scholar]
  104. Quintanilla-Martinez L, Kremer M, Keller G, et al. p53 Mutations in nasal natural killer/T-cell lymphoma from Mexico: association with large cell morphology and advanced disease. Am J Pathol 2001 ; 159 : 2095–2105. [CrossRef] [PubMed] [Google Scholar]
  105. Hongyo T, Hoshida Y, Nakatsuka SI, et al. p53, K-ras, c-kit and beta-catenin gene mutations in sinonasal NK/T-cell lymphoma in Korea and Japan. Oncol Rep 2005 ; 13 : 265–271. [PubMed] [Google Scholar]
  106. Siu LLP, Chan JKC, Wong KF, et al. Specific patterns of gene methylation in natural killer cell lymphomas : p73 is consistently involved. Am J Pathol 2002 ; 160 : 59–66. [CrossRef] [PubMed] [Google Scholar]
  107. Kawamata N, Inagaki N, Mizumura S, et al. Methylation status analysis of cell cycle regulatory genes (p16INK4A, p15INK4B, p21Waf1/Cip1, p27Kip1 and p73) in natural killer cell disorders. Eur J Haematol 2005 ; 74 : 424–429. [CrossRef] [PubMed] [Google Scholar]
  108. Siu LLP, Chan JKC, Wong KF, et al. Aberrant promoter CpG methylation as a molecular marker for disease monitoring in natural killer cell lymphomas. Br J Haematol 2003 ; 122 : 70–77. [CrossRef] [PubMed] [Google Scholar]
  109. Hongyo T, Li T, Syaifudin M, et al. Specific c-kit mutations in sinonasal natural killer/T-cell lymphoma in China and Japan. Cancer Res 2000 ; 60 : 2345–2347. [Google Scholar]
  110. Couronné L, Bastard C, Gaulard P, Hermine O, Bernard O. Aspects moléculaires des lymphomes T périphériques (1) : lymphome T angio-immunoblastique, lymphome T périphérique non spécifié et lymphome anaplasique à grandes cellules. Med Sci (Paris) 2015 ; 31 : 841–852. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.