Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 11, Novembre 2015
Page(s) 1023 - 1033
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153111017
Publié en ligne 17 novembre 2015
  1. Huang Y, de Leval L, Gaulard P. Molecular underpinning of extranodal NK/T-cell lymphoma. Best Pract Res Clin Haematol 2013 ; 26 : 57–74. [CrossRef] [PubMed]
  2. Murata K, Yamada Y. The state of the art in the pathogenesis of ATL and new potential targets associated with HTLV-1 and ATL. Int Rev Immunol 2007 ; 26 : 249–268. [CrossRef] [PubMed]
  3. Yamagishi M, Watanabe T. Molecular hallmarks of adult T cell leukemia. Front Microbiol 2012 ; 3 : 334. [CrossRef] [PubMed]
  4. William BM, Armitage JO. International analysis of the frequency and outcomes of NK/T-cell lymphomas. Best Pract Res Clin Haematol 2013 ; 26 : 23–32. [CrossRef] [PubMed]
  5. Lin CW, Lee WH, Chang CL, et al. Restricted killer cell immunoglobulin-like receptor repertoire without T-cell receptor gamma rearrangement supports a true natural killer-cell lineage in a subset of sinonasal lymphomas. Am J Pathol 2001 ; 159 : 1671–1679. [CrossRef] [PubMed]
  6. Iqbal J, Weisenburger DD, Chowdhury A, et al. Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic γδ T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro. Leukemia 2011 ; 25 : 348–358. [CrossRef] [PubMed]
  7. Chiang AK, Chan AC, Srivastava G, et al. Nasal T/natural killer (NK)-cell lymphomas are derived from Epstein-Barr virus-infected cytotoxic lymphocytes of both NK- and T-cell lineage. Int J Cancer 1997 ; 73 : 332–338. [CrossRef] [PubMed]
  8. Iqbal J, Liu Z, Deffenbacher K, et al. Gene expression profiling in lymphoma diagnosis and management. Best Pract Res Clin Haematol 2009 ; 22 : 191–210. [CrossRef] [PubMed]
  9. Iqbal J, Kucuk C, Deleeuw RJ, et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia 2009 ; 23 : 1139–1151. [CrossRef] [PubMed]
  10. Huang Y, de Reyniès A, de Leval L, et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood 2010 ; 115 : 1226–1237. [CrossRef] [PubMed]
  11. Ng SB, Selvarajan V, Huang G, et al. Activated oncogenic pathways and therapeutic targets in extranodal nasal-type NK/T cell lymphoma revealed by gene expression profiling. J Pathol 2011 ; 223 : 496–510. [CrossRef] [PubMed]
  12. Coppo P, Gouilleux-Gruart V, Huang Y, et al. STAT3 transcription factor is constitutively activated and is oncogenic in nasal-type NK/T-cell lymphoma. Leukemia 2009 ; 23 : 1667–1678. [CrossRef] [PubMed]
  13. Shtilbans V, Wu M, Burstein DE. Current overview of the role of Akt in cancer studies via applied immunohistochemistry. Ann Diagn Pathol 2008 ; 12 : 153–160. [CrossRef] [PubMed]
  14. Jørgensen JM, Sørensen FB, Bendix K, et al. Expression level, tissue distribution pattern, and prognostic impact of vascular endothelial growth factors VEGF and VEGF-C and their receptors Flt-1, KDR, and Flt-4 in different subtypes of non-Hodgkin lymphomas. Leuk Lymphoma 2009 ; 50 : 1647–1660. [CrossRef] [PubMed]
  15. Bischoff JR, Plowman GD. The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol 1999 ; 9 : 454–459. [CrossRef] [PubMed]
  16. Katayama H, Sasai K, Kawai H, et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 2004 ; 36 : 55–62. [CrossRef] [PubMed]
  17. Nakashima Y, Tagawa H, Suzuki R, et al. Genome-wide array-based comparative genomic hybridization of natural killer cell lymphoma/leukemia: different genomic alteration patterns of aggressive NK-cell leukemia and extranodal Nk/T-cell lymphoma, nasal type. Genes Chromosomes Cancer 2005 ; 44 : 247–255. [CrossRef] [PubMed]
  18. Siu LL, Chan V, Chan JK, et al. Consistent patterns of allelic loss in natural killer cell lymphoma. Am J Pathol 2000 ; 157 : 1803–1809. [CrossRef] [PubMed]
  19. Siu LL, Wong KF, Chan JK, et al. Comparative genomic hybridization analysis of natural killer cell lymphoma/leukemia. Recognition of consistent patterns of genetic alterations. Am J Pathol 1999 ; 155 : 1419–1425. [CrossRef] [PubMed]
  20. Taborelli M, Tibiletti MG, Martin V, et al. Chromosome band 6q deletion pattern in malignant lymphomas. Cancer Genet Cytogenet 2006 ; 165 : 106–113. [CrossRef] [PubMed]
  21. Ko YH, Choi KE, Han JH, et al. Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma. Cytometry 2001 ; 46 : 85–91. [CrossRef]
  22. Sun HS, Su I-J, Lin Y-C, et al. A 2.6 Mb interval on chromosome 6q25.2-q25.3 is commonly deleted in human nasal natural killer/T-cell lymphoma. Br J Haematol 2003 ; 122 : 590–599. [CrossRef]
  23. Küçük C, Iqbal J, Hu X, et al. PRDM1 is a tumor suppressor gene in natural killer cell malignancies. Proc Natl Acad Sci USA 2011 ; 108 : 20119–20124. [CrossRef]
  24. Karube K, Nakagawa M, Tsuzuki S, et al. Identification of FOXO3 and PRDM1 as tumor-suppressor gene candidates in NK-cell neoplasms by genomic and functional analyses. Blood 2011 ; 118 : 3195–3204. [CrossRef] [PubMed]
  25. Küçük C, Hu X, Iqbal J, et al. HACE1 is a tumor suppressor gene candidate in natural killer cell neoplasms. Am J Pathol 2013 ; 182 : 49–55. [CrossRef] [PubMed]
  26. Anglesio MS, Evdokimova V, Melnyk N, et al. Differential expression of a novel ankyrin containing E3 ubiquitin-protein ligase, Hace1, in sporadic Wilms’ tumor versus normal kidney. Hum Mol Genet. 2004 ; 13 : 2061–2074. [CrossRef] [PubMed]
  27. Zhang L, Anglesio MS, O’Sullivan M, et al. The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers. Nat Med 2007 ; 13 : 1060–1069. [CrossRef] [PubMed]
  28. Thelander EF, Ichimura K, Corcoran M, et al. Characterization of 6q deletions in mature B cell lymphomas and childhood acute lymphoblastic leukemia. Leuk Lymphoma 2008 ; 49 : 477–487. [CrossRef] [PubMed]
  29. Sakata M, Kitamura YH, Sakuraba K, et al. Methylation of HACE1 in gastric carcinoma. Anticancer Res 2009 ; 29 : 2231–2233. [PubMed]
  30. Hibi K, Sakata M, Sakuraba K, et al. Aberrant methylation of the HACE1 gene is frequently detected in advanced colorectal cancer. Anticancer Res 2008 ; 28 : 1581–1584. [PubMed]
  31. Koo GC, Tan SY, Tang T, et al. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov 2012 ; 2 : 591–597. [CrossRef] [PubMed]
  32. Bouchekioua A, Scourzic L, de Wever O, et al. JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma. Leukemia 2014 ; 28 : 338–348. [CrossRef] [PubMed]
  33. Jerez A, Clemente MJ, Makishima H, et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood 2012 ; 120 : 3048–3057. [CrossRef] [PubMed]
  34. Koskela HLM, Eldfors S, Ellonen P, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med 2012 ; 366 : 1905–1913. [CrossRef] [PubMed]
  35. Küçük C, Jiang B, Hu X, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat Commun 2015 ; 6 : 6025. [CrossRef] [PubMed]
  36. Jiang L, Gu ZH, Yan ZX, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet 2015 ; 47 : 1061–1066. [CrossRef] [PubMed]
  37. Shen L, Liang ACT, Lu L, et al. Frequent deletion of Fas gene sequences encoding death and transmembrane domains in nasal natural killer/T-cell lymphoma. Am J Pathol 2002 ; 161 : 2123–2131. [CrossRef] [PubMed]
  38. Takakuwa T, Dong Z, Nakatsuka S, et al. Frequent mutations of Fas gene in nasal NK/T cell lymphoma. Oncogene 2002 ; 21 : 4702–4705. [CrossRef] [PubMed]
  39. Takahara M, Kishibe K, Bandoh N, et al. P53, N- and K-Ras, and beta-catenin gene mutations and prognostic factors in nasal NK/T-cell lymphoma from Hokkaido. Japan. Hum Pathol 2004 ; 35 : 86–95. [CrossRef]
  40. Hoshida Y, Hongyo T, Jia X, et al. Analysis of p53, K-ras, c-kit, and beta-catenin gene mutations in sinonasal NK/T cell lymphoma in northeast district of China. Cancer Sci 2003 ; 94 : 297–301. [CrossRef] [PubMed]
  41. Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma study group (1984–87). Br J Haematol 1991 ; 79 : 428–437. [CrossRef]
  42. Tsukasaki K, Tobinai K. Biology and treatment of HTLV-1 associated T-cell lymphomas. Best Pract Res Clin Haematol 2013 ; 26 : 3–14. [CrossRef] [PubMed]
  43. Yasunaga J, Matsuoka M. Molecular mechanisms of HTLV-1 infection and pathogenesis. Int J Hematol 2011 ; 94 : 435–442. [CrossRef] [PubMed]
  44. Hasegawa H, Sawa H, Lewis MJ, et al. Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nat Med 2006 ; 12 : 466–472. [CrossRef] [PubMed]
  45. Ohsugi T, Kumasaka T, Okada S, et al. The Tax protein of HTLV-1 promotes oncogenesis in not only immature T cells but also mature T cells. Nat Med 2007 ; 13 : 527–528. [CrossRef] [PubMed]
  46. Suzuki T, Kitao S, Matsushime H, et al. HTLV-1 Tax protein interacts with cyclin-dependent kinase inhibitor p16INK4A and counteracts its inhibitory activity towards CDK4. EMBO J 1996 ; 15 : 1607–1614. [PubMed]
  47. Akagi T, Ono H, Shimotohno K. Expression of cell-cycle regulatory genes in HTLV-I infected T-cell lines: possible involvement of Tax1 in the altered expression of cyclin D2, p18Ink4 and p21Waf1/Cip1/Sdi1. Oncogene 1996 ; 12 : 1645–1652. [PubMed]
  48. Neuveut C, Low KG, Maldarelli F, et al. Human T-cell leukemia virus type 1 Tax and cell cycle progression: role of cyclin D-cdk and p110Rb. Mol Cell Biol 1998 ; 18 : 3620–3632. [CrossRef] [PubMed]
  49. Schmitt I, Rosin O, Rohwer P, et al. Stimulation of cyclin-dependent kinase activity and G1- to S-phase transition in human lymphocytes by the human T-cell leukemia/lymphotropic virus type 1 Tax protein. J Virol 1998 ; 72 : 633–640. [PubMed]
  50. Suzuki T, Narita T, Uchida-Toita M, et al. Down-regulation of the INK4 family of cyclin-dependent kinase inhibitors by tax protein of HTLV-1 through two distinct mechanisms. Virology 1999 ; 259 : 384–391. [CrossRef] [PubMed]
  51. Haller K, Wu Y, Derow E, et al. Physical interaction of human T-cell leukemia virus type 1 Tax with cyclin-dependent kinase 4 stimulates the phosphorylation of retinoblastoma protein. Mol Cell Biol 2002 ; 22 : 3327–3338. [CrossRef] [PubMed]
  52. Cheng H, Ren T, Sun S. New insight into the oncogenic mechanism of the retroviral oncoprotein Tax. Protein Cell 2012 ; 3 : 581–589. [CrossRef] [PubMed]
  53. Grassmann R, Aboud M, Jeang K-T. Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene 2005 ; 24 : 5976–5985. [CrossRef] [PubMed]
  54. Arnulf B, Villemain A, Nicot C, et al. Human T-cell lymphotropic virus oncoprotein Tax represses TGF-beta 1 signaling in human T cells via c-Jun activation: a potential mechanism of HTLV-I leukemogenesis. Blood 2002 ; 100 : 4129–4138. [CrossRef] [PubMed]
  55. El-Sabban ME, Merhi RA, Haidar HA, et al. Human T-cell lymphotropic virus type 1-transformed cells induce angiogenesis and establish functional gap junctions with endothelial cells. Blood 2002 ; 99 : 3383–3389. [CrossRef] [PubMed]
  56. Takeda S, Maeda M, Morikawa S, et al. Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int J Cancer 2004 ; 109 : 559–567. [CrossRef] [PubMed]
  57. Koiwa T, Hamano-Usami A, Ishida T, et al. 5’-long terminal repeat-selective CpG methylation of latent human T-cell leukemia virus type 1 provirus in vitro and in vivo. J Virol 2002 ; 76 : 9389–9397. [CrossRef] [PubMed]
  58. Furukawa Y, Kubota R, Tara M, et al. Existence of escape mutant in HTLV-I tax during the development of adult T-cell leukemia. Blood 2001 ; 97 : 987–993. [CrossRef] [PubMed]
  59. Arnulf B, Thorel M, Poirot Y, et al. Loss of the ex vivo but not the reinducible CD8+ T-cell response to Tax in human T-cell leukemia virus type 1-infected patients with adult T-cell leukemia/lymphoma. Leukemia 2004 ; 18 : 126–132. [CrossRef] [PubMed]
  60. Miyazaki M, Yasunaga J-I, Taniguchi Y, et al. Preferential selection of human T-cell leukemia virus type 1 provirus lacking the 5’ long terminal repeat during oncogenesis. J Virol 2007 ; 81 : 5714–5723. [CrossRef] [PubMed]
  61. Satou Y, Yasunaga J, Yoshida M, et al. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci USA 2006 ; 103 : 720–725. [CrossRef]
  62. Arnold J, Yamamoto B, Li M, et al. Enhancement of infectivity and persistence in vivo by HBZ, a natural antisense coded protein of HTLV-1. Blood 2006 ; 107 : 3976–3982. [CrossRef] [PubMed]
  63. Arnold J, Zimmerman B, Li M, et al. Human T-cell leukemia virus type-1 antisense-encoded gene, Hbz, promotes T-lymphocyte proliferation. Blood 2008 ; 112 : 3788–3797. [CrossRef] [PubMed]
  64. Matsuoka M, Yasunaga J. Human T-cell leukemia virus type 1: replication, proliferation and propagation by Tax and HTLV-1 bZIP factor. Curr Opin Virol 2013 ; 3 : 684–691. [CrossRef] [PubMed]
  65. Zhao T, Yasunaga J, Satou Y, et al. Human T-cell leukemia virus type 1 bZIP factor selectively suppresses the classical pathway of NF-kappaB. Blood 2009 ; 113 : 2755–2764. [CrossRef] [PubMed]
  66. Satou Y, Yasunaga J-I, Zhao T, et al. HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo. PLoS Pathog 2011 ; 7 : e1001274. [CrossRef] [PubMed]
  67. Tsukasaki K, Krebs J, Nagai K, et al. Comparative genomic hybridization analysis in adult T-cell leukemia/lymphoma: correlation with clinical course. Blood 2001 ; 97 : 3875–3881. [CrossRef] [PubMed]
  68. Oshiro A, Tagawa H, Ohshima K, et al. Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma. Blood 2006 ; 107 : 4500–4507. [CrossRef] [PubMed]
  69. Uchida T, Kinoshita T, Watanabe T, et al. The CDKN2 gene alterations in various types of adult T-cell leukaemia. Br J Haematol 1996 ; 94 : 665–670. [CrossRef]
  70. Yamada Y, Hatta Y, Murata K, et al. Deletions of p15 and/or p16 genes as a poor-prognosis factor in adult T-cell leukemia. J Clin Oncol 1997 ; 15 : 1778–1785. [PubMed]
  71. Nosaka K, Maeda M, Tamiya S, et al. Increasing methylation of the CDKN2A gene is associated with the progression of adult T-cell leukemia. Cancer Res 2000 ; 60 : 1043–1048.
  72. Tawara M, Hogerzeil SJ, Yamada Y, et al. Impact of p53 aberration on the progression of adult T-cell leukemia/lymphoma. Cancer Lett 2006 ; 234 : 249–255. [CrossRef] [PubMed]
  73. Bernard OA, Busson-LeConiat M, Ballerini P, et al. A new recurrent and specific cryptic translocation, t(5; 14)(q35; q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001 ; 15 : 1495–1504. [CrossRef] [PubMed]
  74. Su X-Y, Della-Valle V, Andre-Schmutz I, et al. HOX11L2/TLX3 is transcriptionally activated through T-cell regulatory elements downstream of BCL11B as a result of the t(5; 14)(q35;q32). Blood 2006 ; 108 : 4198–4201. [CrossRef] [PubMed]
  75. Li L, Zhang JA, Dose M, et al. A far downstream enhancer for murine Bcl11b controls its T-cell specific expression. Blood 2013 ; 122 : 902–911. [CrossRef] [PubMed]
  76. Gutierrez A, Kentsis A, Sanda T, et al. The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. Blood 2011 ; 118 : 4169–4173. [CrossRef] [PubMed]
  77. Kurosawa N, Fujimoto R, Ozawa T, et al. Reduced level of the BCL11B protein is associated with adult T-cell leukemia/lymphoma. PloS One 2013 ; 8 : e55147. [CrossRef] [PubMed]
  78. Fujimoto R, Ozawa T, Itoyama T, et al. HELIOS-BCL11B fusion gene involvement in a t(2;14) (q34;q32) in an adult T-cell leukemia patient. Cancer Genet 2012 ; 205 : 356–364. [CrossRef] [PubMed]
  79. Pancewicz J, Taylor JM, Datta A, et al. Notch signaling contributes to proliferation and tumor formation of human T-cell leukemia virus type 1-associated adult T-cell leukemia. Proc Natl Acad Sci USA 2010 ; 107 : 16619–16624. [CrossRef]
  80. Nakagawa M, Schmitz R, Xiao W, et al. Gain-of-function CCR4 mutations in adult T cell leukemia/lymphoma. J Exp Med 2014 ; 211 : 2497–2505. [CrossRef] [PubMed]
  81. Yamamoto K, Utsunomiya A, Tobinai K, et al. Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol 2010 ; 28 : 1591–1598. [CrossRef] [PubMed]
  82. Ishida T, Joh T, Uike N, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol 2012 ; 30 : 837–842. [CrossRef] [PubMed]
  83. Taniguchi A, Nemoto Y, Yokoyama A, et al. Promoter methylation of the bone morphogenetic protein-6 gene in association with adult T-cell leukemia. Int J Cancer 2008 ; 123 : 1824–1831. [CrossRef] [PubMed]
  84. Yang Y, Takeuchi S, Tsukasaki K, et al. Methylation analysis of the adenomatous polyposis coli (APC) gene in adult T-cell leukemia/lymphoma. Leuk Res 2005 ; 29 : 47–51. [CrossRef]
  85. Sasaki D, Imaizumi Y, Hasegawa H, et al. Overexpression of Enhancer of zeste homolog 2 with trimethylation of lysine 27 on histone H3 in adult T-cell leukemia/lymphoma as a target for epigenetic therapy. Haematologica 2011 ; 96 : 712–719. [CrossRef] [PubMed]
  86. Yamagishi M, Nakano K, Miyake A, et al. Polycomb-mediated loss of miR-31 activates NIK-dependent NF-κB pathway in adult T cell leukemia and other cancers. Cancer Cell 2012 ; 21 : 121–135. [CrossRef] [PubMed]
  87. Kataoka K, Nagata Y, Kitanaka A, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet 2015 ; Oct 5. doi: 10.1038/ng.3415.
  88. Yamazaki J, Mizukami T, Takizawa K, et al. Identification of cancer stem cells in a Tax-transgenic (Tax-Tg) mouse model of adult T-cell leukemia/lymphoma. Blood 2009 ; 114 : 2709–2720. [CrossRef] [PubMed]
  89. Nagai Y, Kawahara M, Hishizawa M, et al. T memory stem cells are the hierarchical apex of adult T-cell leukemia. Blood 2015 ; 125 : 3527–3535. [CrossRef] [PubMed]
  90. Chandesris M-O, Malamut G, Verkarre V, et al. Enteropathy-associated T-cell lymphoma: a review on clinical presentation, diagnosis, therapeutic strategies and perspectives. Gastroentérologie Clin Biol 2010 ; 34 : 590–605. [CrossRef]
  91. Spencer J, Cerf-Bensussan N, Jarry A, et al. Enteropathy-associated T cell lymphoma (malignant histiocytosis of the intestine) is recognized by a monoclonal antibody (HML-1) that defines a membrane molecule on human mucosal lymphocytes. Am J Pathol 1988 ; 132 : 1–5. [CrossRef] [PubMed]
  92. Hüe S, Mention J-J, Monteiro RC, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 2004 ; 21 : 367–377. [CrossRef] [PubMed]
  93. Roshan B, Leffler DA, Jamma S, et al. The incidence and clinical spectrum of refractory celiac disease in a north american referral center. Am J Gastroenterol 2011 ; 106 : 923–928. [CrossRef]
  94. Cellier C, Delabesse E, Helmer C, et al. Refractory sprue, coeliac disease, and enteropathy-associated T-cell lymphoma. French Coeliac Disease Study Group. Lancet 2000 ; 356 : 203–208.
  95. Malamut G, Afchain P, Verkarre V, et al. Presentation and long-term follow-up of refractory celiac disease: comparison of type I with type II. Gastroenterology 2009 ; 136 : 81–90. [CrossRef] [PubMed]
  96. Al-Toma A, Verbeek WHM, Hadithi M, et al. Survival in refractory coeliac disease and enteropathy-associated T-cell lymphoma: retrospective evaluation of single-centre experience. Gut 2007 ; 56 : 1373–1378. [CrossRef] [PubMed]
  97. De Mascarel A, Belleannée G, Stanislas S, et al. Mucosal intraepithelial T-lymphocytes in refractory celiac disease: a neoplastic population with a variable CD8 phenotype. Am J Surg Pathol 2008 ; 32 : 744–751. [CrossRef] [PubMed]
  98. Malamut G, Meresse B, Cellier C, et al. Refractory celiac disease: from bench to bedside. Semin Immunopathol 2012 ; 34 : 601–613. [CrossRef] [PubMed]
  99. Verkarre V, Romana SP, Cellier C, et al. Recurrent partial trisomy 1q22-q44 in clonal intraepithelial lymphocytes in refractory celiac sprue. Gastroenterology 2003 ; 125 : 40–46. [CrossRef] [PubMed]
  100. Deleeuw RJ, Zettl A, Klinker E, et al. Whole-genome analysis and HLA genotyping of enteropathy-type T-cell lymphoma reveals 2 distinct lymphoma subtypes. Gastroenterology 2007 ; 132 : 1902–1911. [CrossRef] [PubMed]
  101. Zettl A, deLeeuw R, Haralambieva E, et al. Enteropathy-type T-cell lymphoma. Am J Clin Pathol 2007 ; 127 : 701–706. [CrossRef] [PubMed]
  102. Obermann EC, Diss TC, Hamoudi RA, et al. Loss of heterozygosity at chromosome 9p21 is a frequent finding in enteropathy-type T-cell lymphoma. J Pathol 2004 ; 202 : 252–262. [CrossRef] [PubMed]
  103. Cejkova P, Zettl A, Baumgärtner AK, et al. Amplification of NOTCH1 and ABL1 gene loci is a frequent aberration in enteropathy-type T-cell lymphoma. Virchows Arch Int J Pathol 2005 ; 446 : 416–420. [CrossRef]
  104. Quintanilla-Martinez L, Kremer M, Keller G, et al. p53 Mutations in nasal natural killer/T-cell lymphoma from Mexico: association with large cell morphology and advanced disease. Am J Pathol 2001 ; 159 : 2095–2105. [CrossRef] [PubMed]
  105. Hongyo T, Hoshida Y, Nakatsuka SI, et al. p53, K-ras, c-kit and beta-catenin gene mutations in sinonasal NK/T-cell lymphoma in Korea and Japan. Oncol Rep 2005 ; 13 : 265–271. [PubMed]
  106. Siu LLP, Chan JKC, Wong KF, et al. Specific patterns of gene methylation in natural killer cell lymphomas : p73 is consistently involved. Am J Pathol 2002 ; 160 : 59–66. [CrossRef] [PubMed]
  107. Kawamata N, Inagaki N, Mizumura S, et al. Methylation status analysis of cell cycle regulatory genes (p16INK4A, p15INK4B, p21Waf1/Cip1, p27Kip1 and p73) in natural killer cell disorders. Eur J Haematol 2005 ; 74 : 424–429. [CrossRef] [PubMed]
  108. Siu LLP, Chan JKC, Wong KF, et al. Aberrant promoter CpG methylation as a molecular marker for disease monitoring in natural killer cell lymphomas. Br J Haematol 2003 ; 122 : 70–77. [CrossRef]
  109. Hongyo T, Li T, Syaifudin M, et al. Specific c-kit mutations in sinonasal natural killer/T-cell lymphoma in China and Japan. Cancer Res 2000 ; 60 : 2345–2347.
  110. Couronné L, Bastard C, Gaulard P, Hermine O, Bernard O. Aspects moléculaires des lymphomes T périphériques (1) : lymphome T angio-immunoblastique, lymphome T périphérique non spécifié et lymphome anaplasique à grandes cellules. Med Sci (Paris) 2015 ; 31 : 841–852. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.