Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 11, Novembre 2015
Page(s) 1006 - 1013
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153111015
Publié en ligne 17 novembre 2015
  1. Burton DG. Cellular senescence, ageing and disease. Age 2009 ; 31 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  2. Bischof O, Dejean A, Pineau P. Une re-vue de la sénescence cellulaire : ami ou ennemi de la promotion tumorale ? Med Sci (Paris) 2009 ; 25 : 153–160. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Lacroix M, Linares LK, Le Cam L. Le Yin et le Yang de la sénescence : est-il possible de vieillir sans développer le cancer ? Med Sci (Paris) 2012 ; 28 : 245–247. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Serrano M, Blasco MA. Putting the stress on senescence. Curr Opin Cell Biol 2001 ; 13 : 748–753. [CrossRef] [PubMed] [Google Scholar]
  5. Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol 2012 ; 22 : R741–R752. [CrossRef] [PubMed] [Google Scholar]
  6. Gale CR, Cooper C, Sayer AA. Framingham cardiovascular disease risk scores and incident frailty: the English longitudinal study of ageing. Age 2014 ; 36 : 9692. [CrossRef] [PubMed] [Google Scholar]
  7. Galati A, Micheli E, Cacchione S. Chromatin structure in telomere dynamics. Front Oncol 2013 ; 3 : 46. [CrossRef] [PubMed] [Google Scholar]
  8. Fyhrquist F, Saijonmaa O, Strandberg T. The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol 2013 ; 10 : 274–283. [CrossRef] [PubMed] [Google Scholar]
  9. Chong JJ, Chandrakanthan V, Xaymardan M, et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 2011 ; 9 : 527–540. [CrossRef] [PubMed] [Google Scholar]
  10. Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science 2009 ; 324 : 98–102. [CrossRef] [PubMed] [Google Scholar]
  11. Cesselli D, Beltrami AP, D’Aurizio F, et al. Effects of age and heart failure on human cardiac stem cell function. Am J Pathol 2011 ; 179 : 349–366. [CrossRef] [PubMed] [Google Scholar]
  12. Sahin E, Colla S, Liesa M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011 ; 470 : 359–365. [CrossRef] [PubMed] [Google Scholar]
  13. Moslehi J, DePinho RA, Sahin E. Telomeres and mitochondria in the aging heart. Circ Res 2012 ; 110 : 1226–1237. [CrossRef] [Google Scholar]
  14. Rossiello F, Herbig U, Longhese MP, et al. Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr Opin Genet Dev 2014; 26C : 89–95. [CrossRef] [PubMed] [Google Scholar]
  15. Zhu F, Li Y, Zhang J, et al. Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS One 2013 ; 8 : e74535. [CrossRef] [PubMed] [Google Scholar]
  16. Villeneuve C, Guilbeau-Frugier C, Sicard P, et al. p53-PGC-1alpha pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase-A upregulation: role in chronic left ventricular dysfunction in mice. Antioxid Redox Signal 2013 ; 18 : 5–18. [CrossRef] [PubMed] [Google Scholar]
  17. Puente BN, Kimura W, Muralidhar SA, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 2014 ; 157 : 565–579. [CrossRef] [PubMed] [Google Scholar]
  18. Sikora E. Rejuvenation of senescent cells-the road to postponing human aging and age-related disease? Exp Gerontol 2013 ; 48 : 661–666. [CrossRef] [PubMed] [Google Scholar]
  19. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956 ; 11 : 298–300. [CrossRef] [PubMed] [Google Scholar]
  20. Stuart JA, Maddalena LA, Merilovich M, Robb EL. A midlife crisis for the mitochondrial free radical theory of aging. Longev Healthspan 2014 ; 3 : 4. [CrossRef] [PubMed] [Google Scholar]
  21. Brondello JM, Prieur A, Philipot D, et al. La sénescence cellulaire : un nouveau mythe de Janus ? Med Sci (Paris) 2012 ; 28 : 288–296. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  22. Webster BR, Lu Z, Sack MN, Scott I. The role of sirtuins in modulating redox stressors. Free Radic Biol Med 2012 ; 52 : 281–290. [CrossRef] [PubMed] [Google Scholar]
  23. Li YG, Zhu W, Tao JP, et al. Resveratrol protects cardiomyocytes from oxidative stress through SIRT1 and mitochondrial biogenesis signaling pathways. Biochem Biophys Res Commun 2013 ; 438 : 270–276. [CrossRef] [PubMed] [Google Scholar]
  24. Wohlgemuth SE, Calvani R, Marzetti E. The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology. J Mol Cell Cardiol 2014 ; 71 : 62–70. [CrossRef] [PubMed] [Google Scholar]
  25. Lauri A, Pompilio G, Capogrossi MC. The mitochondrial genome in aging and senescence. Ageing Res Rev 2014; 18C : 1–15. [CrossRef] [Google Scholar]
  26. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 2013 ; 20 : 31–42. [CrossRef] [PubMed] [Google Scholar]
  27. Sachs HG, Colgan JA, Lazarus ML. Ultrastructure of the aging myocardium: a morphometric approach. Am J Anat 1977 ; 150 : 63–71. [CrossRef] [PubMed] [Google Scholar]
  28. Mohamed SA, Hanke T, Erasmi AW, et al. Mitochondrial DNA deletions and the aging heart. Exp Gerontol 2006 ; 41 : 508–517. [CrossRef] [PubMed] [Google Scholar]
  29. Barja G, Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 2000 ; 14 : 312–318. [PubMed] [Google Scholar]
  30. Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004 ; 429 : 417–423. [CrossRef] [PubMed] [Google Scholar]
  31. Bronze-da-Rocha E. MicroRNAs expression profiles in cardiovascular diseases. BioMed Res Int 2014 ; 2014 : 985408. [PubMed] [Google Scholar]
  32. Hinkel R, Ng JK, Kupatt C. Targeting microRNAs for cardiovascular therapeutics in coronary artery disease. Curr Opin Cardiol 2014 ; 29 : 586–594. [CrossRef] [PubMed] [Google Scholar]
  33. Thum T. Noncoding RNAs and myocardial fibrosis. Nat Rev Cardiol 2014 ; 11 : 655–663. [CrossRef] [PubMed] [Google Scholar]
  34. Thum T, Catalucci D, Bauersachs J. MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc Res 2008 ; 79 : 562–570. [CrossRef] [PubMed] [Google Scholar]
  35. Bril A. MicroRNA therapeutics in cardiovascular disease. In : Gowraganahalli J, Pitchai B, Khin MU, eds. Pathophysiology and pharmacotherapy of cardiovascular disease. Switzerland : Springer International Publishing, 2015. [Google Scholar]
  36. Boon RA, Iekushi K, Lechner S, et al. MicroRNA-34a regulates cardiac ageing and function. Nature 2013 ; 495 : 107–110. [CrossRef] [PubMed] [Google Scholar]
  37. Zhang X, Azhar G, Wei JY. The expression of microRNA and microRNA clusters in the aging heart. PLoS One 2012 ; 7 : e34688. [CrossRef] [PubMed] [Google Scholar]
  38. Jazbutyte V, Fiedler J, Kneitz S, et al. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age 2013 ; 35 : 747–762. [CrossRef] [PubMed] [Google Scholar]
  39. Van Almen GC, Verhesen W, van Leeuwen RE, et al. MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell 2011 ; 10 : 769–779. [CrossRef] [PubMed] [Google Scholar]
  40. Jung HJ, Suh Y. Circulating miRNAs in ageing and ageing-related diseases. J Genet Genomics 2014 ; 41 : 465–472. [CrossRef] [PubMed] [Google Scholar]
  41. Fukushima Y, Nakanishi M, Nonogi H, et al. Assessment of plasma miRNAs in congestive heart failure. Circ J 2011 ; 75 : 336–340. [CrossRef] [PubMed] [Google Scholar]
  42. Dimmeler S, Nicotera P. MicroRNAs in age-related diseases. EMBO Mol Med 2013 ; 5 : 180–190. [CrossRef] [PubMed] [Google Scholar]
  43. Tchkonia T, Zhu Y, van Deursen J, et al. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013 ; 123 : 966–972. [CrossRef] [PubMed] [Google Scholar]
  44. Rodier F, Coppe JP, Patil CK, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 2009 ; 11 : 973–979. [CrossRef] [PubMed] [Google Scholar]
  45. Campisi J, Andersen JK, Kapahi P, Melov S. Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol 2011 ; 21 : 354–359. [PubMed] [Google Scholar]
  46. Salama R, Sadaie M, Hoare M, Narita M. Cellular senescence and its effector programs. Genes Dev 2014 ; 28 : 99–114. [CrossRef] [PubMed] [Google Scholar]
  47. Linton PJ, Thoman ML. Immunosenescence in monocytes, macrophages, and dendritic cells: lessons learned from the lung and heart. Immunol Lett 2014 ; 162 : 290–297. [CrossRef] [PubMed] [Google Scholar]
  48. Bailey B, Fransioli J, Gude NA, et al. Sca-1 knockout impairs myocardial and cardiac progenitor cell function. Circ Res 2012 ; 111 : 750–760. [CrossRef] [Google Scholar]
  49. Mias C, Coatrieux C, Denis C, et al. Cardiac fibroblasts regulate sympathetic nerve sprouting and neurocardiac synapse stability. PLoS One 2013 ; 8 : e79068. [CrossRef] [PubMed] [Google Scholar]
  50. Mias C, Lairez O, Trouche E, et al. Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells 2009 ; 27 : 2734–2743. [CrossRef] [PubMed] [Google Scholar]
  51. Zouggari Y, Ait-Oufella H, Bonnin P, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med 2013 ; 19 : 1273–1280. [CrossRef] [PubMed] [Google Scholar]
  52. Laroumanie F, Douin-Echinard V, Pozzo J, et al. CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload. Circulation 2014 ; 129 : 2111–2124. [CrossRef] [PubMed] [Google Scholar]
  53. Pinet F, Bauters C. Potentiel des ARN non codants comme biomarqueurs dans l’insuffisance cardiaque. Med Sci (Paris) 2015 ; 31 : 770–776. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Albagli O. Protéger et sévir : p53, métabolisme et suppression tumorale. Med Sci (Paris) 2015 ; 31 : 869–880. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.