Free Access
Med Sci (Paris)
Volume 31, Number 11, Novembre 2015
Page(s) 996 - 1005
Section M/S Revues
Published online 17 November 2015
  1. Sun Y, Thapa N, Hedman AC, Anderson RA. Phosphatidylinositol 4,5-bisphosphate: targeted production and signaling. Bioessays 2013 ; 35 : 513–522. [CrossRef] [PubMed] [Google Scholar]
  2. Salamon RS, Backer JM. Phosphatidylinositol-3,4,5-trisphosphate: tool of choice for class I PI 3-kinases. Bioessays 2013 ; 35 : 602–611. [CrossRef] [PubMed] [Google Scholar]
  3. Schink KO, Raiborg C, Stenmark H. Phosphatidylinositol 3-phosphate, a lipid that regulates membrane dynamics, protein sorting and cell signalling. Bioessays 2013 ; 35 : 900–912. [PubMed] [Google Scholar]
  4. De Matteis MA, Wilson C, D’Angelo G. Phosphatidylinositol-4-phosphate: the Golgi and beyond. Bioessays 2013 ; 35 : 612–622. [CrossRef] [PubMed] [Google Scholar]
  5. Gassama-Diagne A, Payrastre B. Phosphoinositide signaling pathways: promising role as builders of epithelial cell polarity. Int Rev Cell Mol Biol 2009 ; 273 : 313–343. [CrossRef] [PubMed] [Google Scholar]
  6. Proikas-Cezanne T, Takacs Z, Donnes P, Kohlbacher O. WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J Cell Sci 2015 ; 128 : 207–217. [CrossRef] [PubMed] [Google Scholar]
  7. Sagona AP, Nezis IP, Pedersen NM, et al. PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat Cell Biol 2010 ; 12 : 362–371. [CrossRef] [PubMed] [Google Scholar]
  8. D’Angelo G, Vicinanza M, Di Campli A, De Matteis MA. The multiple roles of PtdIns(4)P - not just the precursor of PtdIns(4,5)P2. J Cell Sci 2008 ; 121 : 1955–1963. [CrossRef] [PubMed] [Google Scholar]
  9. Viaud J, Boal F, Tronchere H, et al. Phosphatidylinositol 5-phosphate: a nuclear stress lipid and a tuner of membranes and cytoskeleton dynamics. Bioessays 2014 ; 36 : 260–272. [CrossRef] [PubMed] [Google Scholar]
  10. Niebuhr K, Giuriato S, Pedron T, et al. Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S.flexneri effector IpgD reorganizes host cell morphology. EMBO J 2002 ; 21 : 5069–5078. [CrossRef] [PubMed] [Google Scholar]
  11. Pendaries C, Tronchere H, Arbibe L, et al. PtdIns5P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J 2006 ; 25 : 1024–1034. [CrossRef] [PubMed] [Google Scholar]
  12. Ramel D, Lagarrigue F, Pons V, et al. Shigella flexneri infection generates the lipid PI5P to alter endocytosis and prevent termination of EGFR signaling. Sci Signal 2011; 4 : ra61. [CrossRef] [PubMed] [Google Scholar]
  13. Puhar A, Tronchere H, Payrastre B, et al. A Shigella effector dampens inflammation by regulating epithelial release of danger signal ATP through production of the lipid mediator PtdIns5P. Immunity 2013 ; 39 : 1121–1131. [CrossRef] [PubMed] [Google Scholar]
  14. Guittard G, Gerard A, Dupuis-Coronas S, et al. Cutting edge: Dok-1 and Dok-2 adaptor molecules are regulated by phosphatidylinositol 5-phosphate production in T cells. J Immunol 2009 ; 182 : 3974–3978. [CrossRef] [PubMed] [Google Scholar]
  15. Viaud J, Lagarrigue F, Ramel D, et al. Phosphatidylinositol 5-phosphate regulates invasion through binding and activation of Tiam1. Nat Commun 2014 ; 5 : 4080. [CrossRef] [PubMed] [Google Scholar]
  16. Boal F, Mansour R, Gayral M, et al. TOM1 is a PI5P effector involved in the regulation of endosomal maturation. J Cell Sci 2015 ; 128 : 815–827. [CrossRef] [PubMed] [Google Scholar]
  17. Vicinanza M, Korolchuk VI, Ashkenazi A, et al. PI(5)P regulates autophagosome biogenesis. Mol Cell 2015 ; 57 : 219–234. [CrossRef] [PubMed] [Google Scholar]
  18. Xie J, Erneux C, Pirson I. How does SHIP1/2 balance PtdIns(3,4)P2 and does it signal independently of its phosphatase activity? Bioessays 2013 ; 35 : 733–743. [CrossRef] [PubMed] [Google Scholar]
  19. Posor Y, Eichhorn-Gruenig M, Puchkov D, et al. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 2013 ; 499 : 233–237. [CrossRef] [PubMed] [Google Scholar]
  20. Li H, Marshall AJ. Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: a distinct branch of PI3K signaling. Cell Signal 2015 ; 27 : 1789–1798. [CrossRef] [PubMed] [Google Scholar]
  21. Boucrot E, Ferreira AP, Almeida-Souza L, et al. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 2015 ; 517 : 460–465. [CrossRef] [PubMed] [Google Scholar]
  22. McCartney AJ, Zhang Y, Weisman LS. Phosphatidylinositol 3,5-bisphosphate: low abundance, high significance. Bioessays 2014 ; 36 : 52–64. [CrossRef] [PubMed] [Google Scholar]
  23. Thumm M, Busse RA, Scacioc A, et al. It takes two to tango: PROPPINs use two phosphoinositide-binding sites. Autophagy 2013 ; 9 : 106–107. [CrossRef] [PubMed] [Google Scholar]
  24. Krick R, Busse RA, Scacioc A, et al. Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a beta-propeller protein family. Proc Natl Acad Sci USA 2012 ; 109 : E2042–E2049. [CrossRef] [Google Scholar]
  25. Vasudevan KM, Garraway LA. AKT signaling in physiology and disease. Curr Top Microbiol Immunol 2010 ; 347 : 105–133. [PubMed] [Google Scholar]
  26. Viaud J, Gaits-Iacovoni F, Payrastre B. Regulation of the DH-PH tandem of guanine nucleotide exchange factor for Rho GTPases by phosphoinositides. Adv Biol Regul 2012 ; 52 : 303–314. [CrossRef] [PubMed] [Google Scholar]
  27. Gassama-Diagne A, Yu W, ter Beest M, et al. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat Cell Biol 2006 ; 8 : 963–970. [CrossRef] [PubMed] [Google Scholar]
  28. Lemmon MA, Ferguson KM, Abrams CS. Pleckstrin homology domains and the cytoskeleton. FEBS Lett 2002 ; 513 : 71–76. [CrossRef] [PubMed] [Google Scholar]
  29. Tronchère H, Laporte J, Payrastre B. Myotubularins and associated neuromuscular diseases. Clin Lipidol 2012 ; 7 : 151–162. [CrossRef] [Google Scholar]
  30. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 2014 ; 13 : 140–156. [CrossRef] [PubMed] [Google Scholar]
  31. Leevers SJ, Vanhaesebroeck B, Waterfield MD. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 1999 ; 11 : 219–225. [CrossRef] [PubMed] [Google Scholar]
  32. Whitman M, Downes CP, Keeler M, et al. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988 ; 332 : 644–646. [CrossRef] [PubMed] [Google Scholar]
  33. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002 ; 296 : 1655–1657. [CrossRef] [PubMed] [Google Scholar]
  34. Hawkins PT, Anderson KE, Davidson K, Stephens LR. Signalling through class I PI3Ks in mammalian cells. Biochem Soc Trans 2006 ; 34 : 647–662. [CrossRef] [PubMed] [Google Scholar]
  35. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 2010 ; 11 : 329–341. [CrossRef] [PubMed] [Google Scholar]
  36. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004 ; 304 : 554. [CrossRef] [PubMed] [Google Scholar]
  37. Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci USA 2008 ; 105 : 2652–2657. [CrossRef] [Google Scholar]
  38. Mirzaa G, Conway R, Graham JMJr, Dobyns WB. PIK3CA-related segmental overgrowth. In: Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews(R). Seattle (WA) : University of Washington, 1993. [Google Scholar]
  39. Cescon DW, Gorrini C, Mak TW. Breaking up is hard to do: PI3K isoforms on the rebound. Cancer Cell 2015 ; 27 : 5–7. [CrossRef] [PubMed] [Google Scholar]
  40. Jou ST, Carpino N, Takahashi Y, et al. Essential, nonredundant role for the phosphoinositide 3-kinase p110delta in signaling by the B-cell receptor complex. Mol Cell Biol 2002 ; 22 : 8580–8591. [CrossRef] [PubMed] [Google Scholar]
  41. Fruman DA, Rommel C. PI3Kdelta inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discov 2011 ; 1 : 562–572. [CrossRef] [PubMed] [Google Scholar]
  42. Gopal AK, Kahl BS, de Vos S, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 2014 ; 370 : 1008–1018. [CrossRef] [PubMed] [Google Scholar]
  43. Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 2014 ; 370 : 997–1007. [CrossRef] [PubMed] [Google Scholar]
  44. Walsh CM, Fruman DA. Too much of a good thing: immunodeficiency due to hyperactive PI3K signaling. J Clin Invest 2014 ; 124 : 3688–3690. [CrossRef] [PubMed] [Google Scholar]
  45. Gratacap MP, Guillermet-Guibert J, Martin V, et al. Regulation and roles of PI3Kbeta, a major actor in platelet signaling and functions. Adv Enzyme Regul 2011 ; 51 : 106–116. [CrossRef] [PubMed] [Google Scholar]
  46. Jackson SP, Schoenwaelder SM, Goncalves I, et al. PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat Med 2005 ; 11 : 507–514. [CrossRef] [PubMed] [Google Scholar]
  47. Canobbio I, Stefanini L, Cipolla L, et al. Genetic evidence for a predominant role of PI3Kbeta catalytic activity in ITAM- and integrin-mediated signaling in platelets. Blood 2009 ; 114 : 2193–2196. [CrossRef] [PubMed] [Google Scholar]
  48. Martin V, Guillermet-Guibert J, Chicanne G, et al. Deletion of the p110beta isoform of phosphoinositide 3-kinase in platelets reveals its central role in Akt activation and thrombus formation in vitro and in vivo. Blood 2010 ; 115 : 2008–2013. [CrossRef] [PubMed] [Google Scholar]
  49. Consonni A, Cipolla L, Guidetti G, et al. Role and regulation of phosphatidylinositol 3-kinase beta in platelet integrin alpha2beta1 signaling. Blood 2012 ; 119 : 847–856. [CrossRef] [PubMed] [Google Scholar]
  50. Jackson SP, Schoenwaelder SM. Antithrombotic phosphoinositide 3-kinase beta inhibitors in humans: a shear delight! J Thromb Haemost 2012 ; 10 : 2123–2126. [CrossRef] [PubMed] [Google Scholar]
  51. Nylander S, Kull B, Bjorkman JA, et al. Human target validation of phosphoinositide 3-kinase (PI3K)beta: effects on platelets and insulin sensitivity, using AZD6482 a novel PI3Kbeta inhibitor. J Thromb Haemost 2012 ; 10 : 2127–2136. [CrossRef] [PubMed] [Google Scholar]
  52. Laurent PA, Severin S, Hechler B, et al. Platelet PI3Kbeta and GSK3 regulate thrombus stability at a high shear rate. Blood 2015 ; 125 : 881–888. [CrossRef] [PubMed] [Google Scholar]
  53. Torti M. PI3Kbeta inhibition: all that glitters is not gold. Blood 2015 ; 125 : 750–751. [CrossRef] [PubMed] [Google Scholar]
  54. McCrea HJ, De Camilli P. Mutations in phosphoinositide metabolizing enzymes and human disease. Physiology 2009 ; 24 : 8–16. [CrossRef] [Google Scholar]
  55. Staiano L, De Leo MG, Persico M, De Matteis MA. Mendelian disorders of PI metabolizing enzymes. Biochim Biophys Acta 2015 ; 1851 : 867–881. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.