Open Access
Issue
Med Sci (Paris)
Volume 41, Number 6-7, Juin-Juillet 2025
Page(s) 570 - 577
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025095
Published online 07 July 2025
  1. Ostrom QT, Cioffi G, Waite K, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the united states in 2014-2018. Neuro Oncol 2021 ; 23 : 1–105. [Google Scholar]
  2. Cowppli-Bony A, Delafosse P, Lacour B, et al. Survie des atteintes de cancer en France métropolitaine 1989-2018 – Système nerveux central glioblastomes. Boulogne-Billancourt (France) : Institut national du cancer 2020, 10 p. [Google Scholar]
  3. Roger Stupp, Mason WP, Bent MJ van den, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine 2005 ; 352 : 987–96. [CrossRef] [PubMed] [Google Scholar]
  4. WHO Classification of Tumours Editorial Board. Central nervous system tumours. Lyon (France) : International Agency for Research on Cancer 2021 : 508 p. [Google Scholar]
  5. WHO Classification of Tumours Editorial Board. Central nervous system tumours. Lyon (France) : International Agency for Research on Cancer 2007 : 309 p. [Google Scholar]
  6. WHO Classification of Tumours Editorial Board. Central nervous system tumours. Lyon (France) : International Agency for Research on Cancer 2016 : 408 p. [Google Scholar]
  7. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013 ; 38 : 23–38. [CrossRef] [PubMed] [Google Scholar]
  8. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009 ; 10 : 295–304. [CrossRef] [PubMed] [Google Scholar]
  9. Cain JA, Montibus B, Oakey RJ. Intragenic CpG islands and their impact on gene regulation. Front Cell Dev Biol 2022 ; 10 : 832348. [CrossRef] [PubMed] [Google Scholar]
  10. Weber M. Profils de méthylation de l’ADN dans les cellules normales et cancéreuses. Med Sci (Paris) 2008 ; 24 : 731–4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Liu Y, Weyrich LS, Llamas B. More arrows in the ancient DNA quiver: use of paleoepigenomes and paleomicrobiomes to investigate animal adaptation to environment. Mol Biol Evol 2020 ; 37 : 307–19. [CrossRef] [PubMed] [Google Scholar]
  12. Pang Y-Y, Lu RJ-H, Chen P-Y. Behavioral epigenetics: perspectives based on experience-dependent epigenetic inheritance. Epigenomes 2019 ; 3 : 18. [CrossRef] [PubMed] [Google Scholar]
  13. Habash NW, Sehrawat TS, Shah VH, et al. Epigenetics of alcohol-related liver diseases. JHEP Rep 2022 ; 4 : 100466. [CrossRef] [PubMed] [Google Scholar]
  14. Loyfer N, Magenheim J, Peretz A, et al. A DNA methylation atlas of normal human cell types. Nature 2023 ; 613 : 355–64. [CrossRef] [PubMed] [Google Scholar]
  15. Liu C, Marioni RE, Hedman ÅK, et al. A DNA methylation biomarker of alcohol consumption. Mol Psychiatry 2018 ; 23 : 422–33. [CrossRef] [PubMed] [Google Scholar]
  16. Shimizu D, Taniue K, Matsui Y, et al. Pan-cancer methylome analysis for cancer diagnosis and classification of cancer cell of origin. Cancer Gene Ther 2022 ; 29 : 428–36. [CrossRef] [Google Scholar]
  17. Ghosh S, Yates AJ, Fruhwald MC, et al. Tissue specific DNA methylation of CpG islands in normal human adult somatic tissues distinguishes neural from non-neural tissues. Epigenetics 2010 ; 5 : 527–38. [CrossRef] [PubMed] [Google Scholar]
  18. Ladd-Acosta C, Pevsner J, Sabunciyan S, et al. DNA methylation signatures within the human brain. Am J Hum Genet 2007 ; 81 : 1304–15. [CrossRef] [Google Scholar]
  19. Möhrmann L, Werner M, Oleś M, et al. Comprehensive genomic and epigenomic analysis in cancer of unknown primary guides molecularly-informed therapies despite heterogeneity. Nat Commun 2022 ; 13 : 4485. [CrossRef] [PubMed] [Google Scholar]
  20. Moran S, Martínez-Cardús A, Sayols S, et al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol 2016 ; 17 : 1386–95. [CrossRef] [PubMed] [Google Scholar]
  21. Gorse M, Bianchi C, Proudhon C. Épigénétique et cancer — La méthylation dans tous ses états. Med Sci (Paris) 2024 ; 40 : 925–34. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  22. Daenekas B, Pérez E, Boniolo F, et al. Conumee 2.0: enhanced copy-number variation analysis from DNA methylation arrays for humans and mice. Bioinformatics 2024 ; 40 : btae029. [CrossRef] [Google Scholar]
  23. Capper D, Jones DTW, Sill M, et al. DNA methylation-based classification of central nervous system tumours. Nature 2018 ; 555 : 469–74. [CrossRef] [PubMed] [Google Scholar]
  24. Wu Z, Abdullaev Z, Pratt D, et al. Impact of the methylation classifier and ancillary methods on CNS tumor diagnostics. Neuro Oncol 2021 ; 24 : 571–81. [Google Scholar]
  25. Pickles JC, Fairchild AR, Stone TJ, et al. DNA methylation-based profiling for paediatric CNS tumour diagnosis and treatment: a population-based study. Lancet Child Adolesc Health 2020 ; 4 : 121–30. [CrossRef] [PubMed] [Google Scholar]
  26. Pages M, Uro-Coste E, Colin C, et al. The implementation of dna methylation profiling into a multistep diagnostic process in pediatric neuropathology: a 2-year real-world experience by the french neuropathology network. Cancers (Basel) 2021 ; 13 : 1377. [CrossRef] [Google Scholar]
  27. Sturm D, Capper D, Andreiuolo F, et al. Multiomic neuropathology improves diagnostic accuracy in pediatric neuro-oncology. Nat Med 2023 ; 29 : 917–26. [CrossRef] [PubMed] [Google Scholar]
  28. Capper D, Stichel D, Sahm F, et al. Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathol 2018 ; 136 : 181–210. [CrossRef] [Google Scholar]
  29. Jaunmuktane Z, Capper D, Jones DTW, et al. Methylation array profiling of adult brain tumours: diagnostic outcomes in a large, single centre. Acta Neuropathol Commun 2019 ; 7 : 24. [CrossRef] [Google Scholar]
  30. Choudhury A, Magill ST, Eaton CD, et al. Meningioma DNA methylation groups identify biological drivers and therapeutic vulnerabilities. Nat Genet 2022 ; 54 : 649–59. [CrossRef] [PubMed] [Google Scholar]
  31. Sahm F, Schrimpf D, Stichel D, et al. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol 2017 ; 18 : 682–94. [CrossRef] [PubMed] [Google Scholar]
  32. Koelsche C, Schrimpf D, Stichel D, et al. Sarcoma classification by DNA methylation profiling. Nat Commun 2021 ; 12 : 498. [CrossRef] [PubMed] [Google Scholar]
  33. Jurmeister P, Glöß S, Roller R, et al. DNA methylation-based classification of sinonasal tumors. Nat Commun 2022 ; 13 : 7148. [CrossRef] [PubMed] [Google Scholar]
  34. Koelsche C, Deimling A von. Methylation classifiers: brain tumors, sarcomas, and what’s next. Genes Chromosomes Cancer 2022 ; 61 : 346–55. [CrossRef] [PubMed] [Google Scholar]
  35. Rodríguez-Paredes M, Bormann F, Raddatz G, et al. Methylation profiling identifies two subclasses of squamous cell carcinoma related to distinct cells of origin. Nat Commun 2018 ; 9 : 577. [CrossRef] [PubMed] [Google Scholar]
  36. Khalighi S, Reddy K, Midya A, et al. Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment. NPJ Precis Oncol 2024 ; 8 : 80. [CrossRef] [PubMed] [Google Scholar]
  37. Kilaru V, Knight AK, Katrinli S, et al. Critical evaluation of copy number variant calling methods using DNA methylation. Genet Epidemiol 2020 ; 44 : 148. [CrossRef] [PubMed] [Google Scholar]
  38. Della Monica R, Cuomo M, Buonaiuto M, et al. MGMT and whole-genome DNA methylation impacts on diagnosis, prognosis and therapy of glioblastoma multiforme. Int J Mol Sci 2022 ; 23 : 7148. [CrossRef] [PubMed] [Google Scholar]
  39. Sabedot TS, Malta TM, Snyder J, et al. A serum-based DNA methylation assay provides accurate detection of glioma. Neuro Oncol 2021 ; 23 : 1494–508. [CrossRef] [PubMed] [Google Scholar]
  40. An S, McCortney K, Walshon J, et al. Methylation profiling of plasma cell-free DNA in pediatric brain tumor patients. Acta Neuropathol 2024 ; 148 : 29. [CrossRef] [Google Scholar]
  41. Montel F. Séquençage de l’ADN par nanopores — Résultats et perspectives. Med Sci (Paris) 2018 ; 34 : 161–5. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Patel A, Dogan H, Payne A, et al. Rapid-CNS2: rapid comprehensive adaptive nanopore-sequencing of CNS tumors, a proof-of-concept study. Acta Neuropathol 2022 ; 143 : 609–12. [CrossRef] [Google Scholar]
  43. Kuschel LP, Hench J, Frank S, et al. Robust methylation-based classification of brain tumours using nanopore sequencing. Neuropathol Appl Neurobiol 2023 ; 49 : e12856. [CrossRef] [PubMed] [Google Scholar]
  44. Vermeulen C, Pagès-Gallego M, Kester L, et al. Ultra-fast deep-learned CNS tumour classification during surgery. Nature 2023 ; 622 : 842–9. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.